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Abstract

In this paper, we revisit the problem of Differen-
tially Private Stochastic Convex Optimization (DP-
SCO) with heavy-tailed data, where the gradient of
the loss function has bounded moments. Instead
of the case where the loss function is Lipschitz or
each coordinate of the gradient has bounded sec-
ond moment studied previously, we consider a re-
laxed scenario where each coordinate of the gra-
dient only has bounded (1 + v)-th moment with
some v ∈ (0, 1]. Firstly, we start from the one di-
mensional private mean estimation for heavy-tailed
distributions. We propose a novel robust and pri-
vate mean estimator which is optimal. Based on its
idea, we then extend to the general d-dimensional
space and study DP-SCO with general convex and
strongly convex loss functions. We also provide
lower bounds for these two classes of loss under
our setting and show that our upper bounds are op-
timal up to a factor of O(Poly(d)). To address
the high dimensionality issue, we also study DP-
SCO with heavy-tailed gradient under some spar-
sity constraint (DP sparse learning). We propose a
new method and show it is also optimal up to a fac-
tor of O(s∗), where s∗ is the underlying sparsity of
the constraint.

1 Introduction
As one of the most fundamental problems in machine learn-
ing and statistics, Stochastic Convex Optimization (SCO)
[Vapnik, 1999] with its empirical form, Empirical Risk Min-
imizataion (ERM), has been widely studied. Both SCO and
ERM have found numerous applications in many areas such
as medicine, finance, genomics and social science. However,
due to the widespread concerns on privacy, how to handle
sensitive data, such as biomedical datasets, has become a big
hurdle for successful implementations of SCO in practice. To
address the privacy issue, Differential Privacy (DP) [Dwork
et al., 2006] has established itself as a canonical privacy no-
tation for privacy-preserving data analysis.
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The study of SCO and ERM under DP constraint (i.e., DP-
SCO and DP-ERM) has received significant attentions over
the past decade. A long list of works have studied the problem
from different perspectives: [Bassily et al., 2014; Bassily et
al., 2019; Feldman et al., 2020] studied the problems in the
low dimensional case and the central DP model, [Cai et al.,
2020] considered the problems in the high dimensional sparse
case and the central DP model, [Duchi et al., 2018] focused
on the problems in the local DP model.

Even though there are numerous works on DP-SCO, a crit-
ical issue in most existing results is that loss function has to
be assumed to satisfy the O(1)-Lipschitz property, or the un-
derlying data distribution is assumed to be sub-Gaussian or
even bounded. Despite simplifying the procedure of design-
ing DP algorithms, such assumptions are unrealistic and may
not always hold when dealing with real-world datasets, espe-
cially those from biomedicine and finance, as it has been ob-
served that they are often heavy-tailed [Woolson and Clarke,
2011]. The heavy-tailed data could lead to unbounded gradi-
ents and thus break the Lipschitz assumption, which implies
that previous algorithms may fail to provide DP guarantee.
Recently, to tackle this issue, there have been several works
studying DP-SCO with heavy-tailed data [Wang et al., 2020b;
Kamath et al., 2022; Hu et al., 2022] or private mean estima-
tion for heavy-tailed distributions [Barber and Duchi, 2014;
Kamath et al., 2020; Liu et al., 2021]. However, all these
results still need to assume that the distribution of each coor-
dinate of the gradient of the loss function has bounded second
moment, which implies the data is still well-behaved to some
extent. Thus, a natural question is,

Can we further relax the bounded second moment con-
dition to model the data distribution that are more heavy-
tailed? And what are the theoretical behaviors of DP-SCO
with more extremely heavy-tailed data?

In this paper, we revisit the problem of DP-SCO with
heavy-tailed data under more relaxed assumptions. For the
first time, we consider the case with more extremely heavy-
tailed data such that the distribution of each coordinate of the
loss gradient has only bounded (1 + v)-th moment for some
v ∈ (0, 1]. Our contributions can be summarized as follows.

• First, we consider one-dimensional private mean esti-
mation for heavy-tailed distributions. We propose a
novel robust and (ε, δ)-DP estimator based on truncating



the data, which achieves an error of O
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)
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where n is the number of data samples. We then show
that our proposed estimator is optimal by providing the
matching lower bound on the estimation error.

• Based on the idea in the one-dimensional case, we then
extend to estimate the mean of heavy-tailed distribu-
tion in a general d-dimensional space and use it to
DP-SCO. Specifically, we consider both strongly con-
vex and general convex loss functions for DP-SCO, and
propose (ε, δ)-DP algorithms that achieve an error of
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we omit other terms. We also provide the lower bounds
under our setting in both (ε, δ)-DP and ε-DP, and show
that our upper bound is optimal up to a factor of Poly(d).

• Finally, to mitigate the high dimensionality issue, we
also study DP-SCO with heavy-tailed data under the
sparsity constraint, i.e., DP sparse learning. Based on
the previous ideas, we propose a new method under our
setting and show that it is possible to achieve an error
of Õ

(
(s∗)

1+2v
1+v ( log d

nε )
2v

1+v

)
, where s∗ is the underlying

sparsity. We also proof that the bound is optimal up to a
factor of O(s∗).

Due to space limit, all the proofs are included in Appendix.

2 Related Work
As mentioned in Section 1, there are a vast number of works
on DP-SCO and DP-ERM. Due to space limit, here we just
discuss the results that are the most related to ours. For DP-
SCO with heavy-tailed data, [Wang et al., 2020b] first studies
the problem by proposing three methods based on different
assumptions. However, all the three methods need to assume
the distribution of gradient of the loss is sub-exponential or
has at least bounded second moment. [Kamath et al., 2022]
recently revisits the problem under the same assumption as in
[Wang et al., 2020b] and improves the (expected) excess pop-
ulation risk for both convex and strongly convex loss func-
tions. It also provides the lower bounds in both (ε, δ)-DP
and ε-DP models. Note that although some ideas of our algo-
rithms and proofs are the same as theirs, their methods cannot
be used in our relaxed setting and there are several differ-
ences. See Remark 1 and 2 for details.

DP sparse learning has been studied previously [Wang and
Gu, 2019; Wang and Xu, 2019; Wang and Xu, 2021]. How-
ever, all of the previous methods need either the loss function
be Lipschitz, or the data distribution be sub-Gaussian or even
bounded [Cai et al., 2021]. [Hu et al., 2022] recently extends
to the heavy-tailed case where each coordinate of the gradient
has bounded second moment. However, due to their private
estimator, it is impossible to use their methods to the bounded
(1 + v)-th moment case. See Remark 3 for details.

3 Preliminaries
Definition 1 (Differential Privacy (DP)[Dwork et al., 2006]).
A randomized algorithm M : Xn 7→ Y satisfies (ε, δ)-
differential privacy if for every pair of neighbouring datasets

X,X ′ ∈ Xn (i.e., datasets that differ in exactly one entry), it
holds for ∀Y ⊆ Y that

P(M(X) ∈ Y ) ≤ eε · P(M(X ′) ∈ Y ) + δ.

When δ = 0, we callM as ε-DP.
Lemma 1 (Adaptive Composition Theorem). Given target
privacy parameters 0 < ε < 1 and 0 < δ < 1, to ensure
(ε, δ)-DP over m mechanisms, it suffices that each mecha-
nism is (ε′, δ′)-DP, where ε′ = ε

2
√

2m ln(2/δ)
and δ′ = δ

2m .

Lemma 2 (Laplacian Mechanism). Given a dataset D ∈ Xn
and a function q : Xn → Rd, the Laplacian Mechanism is
defined as q(D) + (Y1, Y2, · · · , Yd), where each Yi is i.i.d.
sampled from the Laplacian Distribution Lap(∆1(q)

ε ), where
∆1(q) is the `1-sensitivity of the function q, i.e., ∆1(q) =
supD∼D′ ||q(D) − q(D′)||1. The density of the Laplacian
distribution with parameter λ is Lap(λ)(x) = 1

2λ exp(−xλ ).
Laplacian mechanism preserves ε-DP.
Lemma 3 (Gaussian Mechanism). Given a dataset D ∈ Xn
and a function q : Xn → Rd, the Gaussian mechanism is
defined as q(D) + ξ where ξ ∼ N (0,

2∆2
2(q) log(1.25/δ)

ε2 Id),
where ∆2(q) is the `2-sensitivity of the function q, i.e.,
∆2(q) = supD∼D′ ‖q(D) − q(D′)‖2. Gaussian mechanism
preserves (ε, δ)-DP.
Definition 2 (DP-SCO [Bassily et al., 2014]). Let D be
some unknown distribution over the data universe X and
X = {x1, . . . , xn} ⊆ Xn be i.i.d samples from the distribu-
tion D. Given a convex constraint setW ⊆ Rd and a convex
loss function ` :W×X 7→ R. Differentially Private Stochas-
tic Convex Optimization (DP-SCO) is to find wpriv so as to
minimize the population risk, i.e., LD(w) = Ex∼D[`(w, x)]
with the guarantee of being differentially private. The utility
of an algorithm A for DP-SCO is measured by the expected
excess population risk, which is defined as follows:

errD(wpriv) = EX∼Dn,A
[
LD(wpriv)− min

w∈W
LD(w)

]
.

4 One-dimensional Private Mean Estimation
for Heavy-tailed Distributions

Before studying DP-SCO with heavy-tailed data, we start
from the one-dimensional private mean estimation for heavy-
tailed distributions to illustrate the idea of our following
methods more clearly. Here we assume the data distribution
has bounded (1 + v)-th moment with some v ∈ (0, 1]. For-
mally, we are given a dataset X = {x1, . . . , xn} with each
xi ∈ R sampled from the one dimension distribution D such
that Ex∼D[|x|1+v] ≤ u = O(1). 1 We aim to privately es-
timate the mean of the distribution, i.e., µ = Ex∼D[x]. Note
that here we use the raw moment, which also implies that its
central moment is bounded, i.e., Ex∼D[|x−Ex∼D[x]|1+v] ≤
O(1), and vice versa. See Lemma 13 in Appendix for details.

We propose a private and robust estimator based on trunca-
tion. Specifically, for each data sample xi, if its magnitude is
within the designed threshold B then we will keep it, other-
wise we set it be 0. After the preprocessing, each sample now

1Throughout the whole paper we assume that v and u are known.



Algorithm 1 Truncation Based DP Mean Estimator:
DPODME Tε,δ,ξ(X)

Input: Data samples X = {xi}ni=1, xi ∈ R. Parameters ε, δ,
ξ

Output: A private mean estimator µ̃ ∈ R
1: Truncate each data sample xi by x′i ← xi·1|xi|≤B , where

B =

(
unε

log 1
ξ

√
log 1.25

δ

) 1
1+v

.

2: Get the robust mean estimator µ̂← 1
n

∑n
i=1 x

′
i.

3: return µ̃← µ̂+ ν, where ν ∼ N (0, 8B2

n2ε2 log 1.25
δ ).

is bounded in [−B,B]. Thus we can add Gaussian noise to
the mean of the truncated data. See Algorithm 1 for details.

Theorem 1. For any 0 < ε, δ ≤ 1, Algorithm 1
DPODME Tε,δ,ξ(X) satisfies (ε, δ)-DP. Moreover, given
any failure probability ξ, with probability at least 1 − ξ, the
output µ̃ satisfies

|µ̃− µ| ≤ O

(
u

1
1+v

(
log 1

ξ

√
log 1

δ

nε

) v
1+v
)
.

Remark 1. When v = 1, the error becomes O
(

1√
nε

)
(if we

omit other terms), which matches the bound in [Wang et al.,
2020a] and is optimal [Kamath et al., 2020]. However, previ-
ous results are for the case where the distribution has bounded
second moment. Here we relax it to the case where the dis-
tribution only has its (1 + v)-th moment bounded. Thus, our
method can be thought as a generalization of the previous
results. Recently [Tao et al., 2022] also considers a simi-
lar problem. However, there are several differences: First,
[Tao et al., 2022] focuses on the online setting in the ε-DP
model while we consider the offline setting and the (ε, δ)-DP
model. Secondly, the methods in [Tao et al., 2022] are based
on the tree mechanism and Laplacian mechanism, while we
mainly use the Gaussian mechanism. Thus, our error bound
is lower. Thirdly, besides the upper bound, we also show that
the bound of O((u

1
v+1 ( 1

nε )
v

1+v )) in Theorem 1 is optimal by
showing its lower bound in the Theorem 2 below, which has
not been studied in [Tao et al., 2022].

Theorem 2. There exists a distribution D with mean µ and
its (1+v)-th raw moment is bounded by u. For any (ε, δ)-DP
algorithm, its output µ̃ satisfies the following with at least a
constant probability

|µ̃− µ| ≥ Ω
(
u

1
v+1

( 1

nε

) v
1+v
)
.

When v = 1 and u = 1, our result will be equivalent to
the lower bound in [Kamath et al., 2020]. Thus, Theorem 2 is
a generalization of the previous result on the lower bound of
private mean estimation for heavy-tailed distributions. More-
over, besides the (ε, δ)-DP model, the lower bound also holds
for any ε-DP algorithm.

5 DP-SCO with Heavy-Tailed Data
In this section, based on the previous one dimensional private
mean estimator, we provide our methods for DP-SCO with
heavy-tailed data. Before that, we provide the assumptions
that will be used throughout the section.

Definition 3 (Lipschitz). A function f : W → R is L-
Lipschitz if for all w1, w2 ∈ W we have |f(w1)− f(w2)| ≤
L‖w1 − w2‖2.

Definition 4 (Strong convexity). A function f is α-strongly
convex on W if for all w1, w2 ∈ W we have f (w1) ≥
f (w2) + 〈∇f (w2) , w1 − w2〉+ α

2 ‖w1 − w2‖22 .
Definition 5 (Smoothness). A function f is β-smooth on
W if for all w1, w2 ∈ W we have f(w1) ≤ f(w2) +

〈∇f(w2), w1 − w2〉+ β
2 ‖w1 − w2‖22

Assumption 1. We make the following assumptions:

1. The parameter spaceW is convex and bounded with di-
ameter ∆, i.e., for ∀w1, w2 ∈ W , ‖w1 − w2‖2 ≤ ∆.

2. The loss function `(w, x) is non-negative and differen-
tiable for all w ∈ W and x ∈ D.

3. The population risk LD(·) is β-smooth overW . For any
w ∈ W , the gradient of the population risk function sat-
isfies ‖∇LD(w)‖2 ≤ R = O(1). Moreover, the op-
timal solution w∗ = arg minw∈W LD(w) satisfies that
∇LD(w∗) = 0.

4. For any w ∈ W , the distribution of each coordinate of
the gradient of the loss function has bounded (1 + v)-
th (raw) moment with some v ∈ (0, 1], i.e., there is a
constant u > 0 such that Ex∼D[|∇j`(w, x)|1+v] ≤ u
for all j ∈ [d].

There are several notes on the terms in Assumption 1.
Firstly, the first three terms in Assumption 1 are commonly
used in the previous works on DP-SCO with heavy-tailed data
[Kamath et al., 2022; Wang et al., 2020b]. The fourth con-
dition assumes that the gradient of the loss is heavy-tailed,
which is a commonly used assumption in the study of robust
learning with heavy-tailed data. However, as mentioned pre-
viously, most of those works only assume that the gradient
has at least bounded second moment while here we relax to
the (1+v)-th moment. Moreover, we can see it is a relaxation
of the Lipschitz condition that ‖∇LD(w)‖2 ≤ L for all w.

In Algorithm 2, we propose our framework. The idea of the
algorithm is quite straightforward: we use the private version
of Projected Gradient Descent (PGD). Specifically, in each it-
eration t, we first privately estimate the vector ∇LD(wt−1)
by using gradients {∇`(wt−1, xi)}ni=1, where wt−1 is the
current parameter. Then we update the parameter via the
PGD. In the classical setting where the data is regular or the
loss function is Lipschitz, we can use the Gaussian mecha-
nism to the average of the gradients

∑n
i=1∇`(wt−1,xi)

n to get
a private estimation of ∇LD(wt−1). However, due to the
heavy-tailed assumption on gradients in Assumption 1, in our
problem we cannot use the same approach directly as now the
`2-norm sensitivity maybe infinite. Thus the main difficulty is
designing private estimator for∇LD(w) = Ex∼D[∇`(w, x)],



Algorithm 2 DP-SCOε,δ,η,T,τ

Input: Data samples X = {xi}ni=1 ⊆ Rd, parameters
ε, δ, η, T, τ .

Output: Private minimizer wpriv.
1: for t← 1, · · · , T do
2: if ` is convex then
3: Set Xt = X, ε′ ← ε

2
√

2T log(2/δ)
, δ′ ← δ

2T .

4: else if ` is strongly convex then
5: Set Xt = {x(t−1)n/T+1, · · · , xtn/T }.
6: Set ε′ ← ε, δ′ ← δ.
7: end if
8: ∇L̃D(wt−1)← DPHDMEε′,δ′,τ ({∇`(wt−1, x)}x∈X)

9: wt ← ProjW(wt−1 − η∇L̃D(wt−1))
10: end for
11: if LD(·) is strongly convex then
12: Set wpriv ← wT
13: else if LD(·) is convex then
14: Set wpriv ← 1

T

∑
t∈[T ] wt

15: end if
16: return wpriv

which could be seen as an instance of the private mean esti-
mation in the d-dimensional space.

In Section 4 we considered the case where d = 1. Now
we will use its idea in the general high dimensional case. Our
estimator is presented in Algorithm 3. For each coordinate,
we first partite the whole dataset into m subgroups. Then in
each sub-dataset, for each coordinate, we truncate the data
and calculate the mean of the truncated data. Finally, we use
the traditional Median of Means (MoM) method in each co-
ordinate, i.e., for each coordinate, we calculate the median
among the means of these m subgroups, and add Gaussian
noise to ensure (ε, δ)-DP.

Theorem 3. For any 0 < ε, δ < 1, Algorithm 3 is (ε, δ)-DP.
Moreover, assume each data xi ∼ D where the distributionD
satisfies: (1) D has the mean µ ∈ Rd and ‖µ‖2 ≤ R = O(1);
(2) Exi∼D|[xi]j |1+v ≤ u for each j ∈ [d]. Then for any
given truncation parameter τ ∈ R and failure probability ξ,
with probability at least 1 − ξ, Algorithm 3 outputs a private
mean estimator µ̃ ∈ Rd such that,

‖µ̃− µ‖2 ≤ O

(
√
d
(
u

1
1+v

( log d
ξ

n

) v
1+v

+
u

τv

)

+
τ
√
d
(√

d+
√

log 1
ξ

)
log
(
d
ξ

)√
ln 1

δ

εn

)
,

where the Big-O notation omits the term of R.

Remark 2. To privately estimate the mean of heavy-tailed
distributions with bounded second moments, in general there
are three approaches: The first one is directly using one di-
mensional private estimator to each coordinate [Wang et al.,
2020b; Wang et al., 2020a]. However, the bound of this ap-
proach is only sub-optimal. [Kamath et al., 2020] proposes a
method which aggressively truncate the distribution around a

Algorithm 3 DP High-Dimension Mean Estimator
DPHDMEε,δ,τ (X)

Input: Data samples X = {xi}ni=1, xi ∈ Rd. Parameters ε,
δ, τ

Output: A DP mean estimator µ̃ ∈ Rd

1: m← 4 log
(

2d
ξ

)
.

2: for j ← 1, · · · , d do
3: for k ← 1, · · · ,m do
4: for i← (k − 1) · nm + 1, · · · , k · nm do
5: [x′i]j ← [xi]j · 1|[xi]j |≤τ
6: end for
7: µ̂kj ← m

n

∑n
i=1[x′i]j

8: end for
9: µ̂j ← median(µ̂1

j , µ̂
2
j , · · · , µ̂mj )

10: end for
11: µ̂← (µ̂1, µ̂2, · · · , µ̂d)
12: return µ̃← µ̂+ ν, where ν ∼ N

(
0,

8τ2m2d ln 1.25
δ

ε2n2 Id

)
point, and compute the noisy empirical mean. However, their
theoretical guarantee only holds with constant probability. In-
stead of these two approaches, here we adopt the idea of the
third one, which is a private version of the MoM method and
was recently proposed by [Kamath et al., 2022]. However,
there are two crucial differences: First, the truncation step is
quite different, [Kamath et al., 2022] truncates each data into
an interval [a, b], i.e., for the sample x, if x > b then we will
let x′ = b and if x < a then we will let x′ = a. However, our
approach could be seen as thresholding, i.e., when |x| > τ
then x′ = 0. Second, to get the theoretical guarantee, [Ka-
math et al., 2022] needs Lemma 4.4 in [Kamath et al., 2020]
(or Lemma A.2 in [Kamath et al., 2022]), which only holds
for data distributions that have at least bounded second mo-
ment. Thus, we cannot adopt their approach in our setting. To
overcome the challenge we provide the following lemma on
the concentration of heavy-tailed distributions, which is the
key to prove Theorem 3.
Theorem 4. Let x1, x2, · · · , xn ∈ R be i.i.d. random vari-
ables with bounded (1 + v)-th moment, i.e., for ∀i ∈ [n], we
have E[|xi|1+v] ≤ M for some constant v ∈ (0, 1]. Let µ be
E[xi], ∀i ∈ [n]. Then

P

(∣∣∣∣∣ 1n
n∑
i=1

xi − µ

∣∣∣∣∣ ≥ t
)
≤ 8M

nv
1

t1+v
. (1)

Based on Theorem 3 and the convergent rate of PGD, we
give the accuracy guarantees of Algorithm 2 by considering
both general convex and strongly convex loss functions.
Theorem 5. For any 0 < ε, δ < 1, Algorithm 2 is (ε, δ)-DP.
Theorem 6 (General Convex Case). Suppose we have a DP-
SCO problem satisfying Assumption 1. Taking T = R2ε2n2

τ2d4 ,

η = ∆
R
√
T

and τ =
(

εn
d3/2

) 1
1+v

in Algorithm 2, then the out-

put wpriv = 1
T

∑
t∈[T ] w

t satisfies

errD(wpriv) ≤ Õ

(
∆u2

(
d

1+4v
2+2v

(εn)
v

1+v
+

d
3+12v
2+2v

(εn)
3v

1+v

))
,



where the Big-Õ notation omits all the logarithmic terms and
R.
Theorem 7 (Strongly Convex Case). Suppose we have a DP-
SCO problem satisfying Assumption 1, and additionally the
loss function `(·, x) is α-strongly convex for every x ∈ X .
Taking parameters T = log

(
(α+β)G
αβ

)
/ log

(
α2+β2+αβ

(α+β)2

)
,

η = 1
α+β and τ =

(
uεn

d
3
2
√
T

) 1
1+v

in Algorithm 2, then the

output wpriv = wT satisfies

errD(wpriv) ≤ Õ

(
(∆ + 1)2(α+ β)2

α2β
u

2
1+v

d
1+2v
1+v

(εn)
2v

1+v

)
,

where the Big-Õ notation omits all the logarithmic terms and
R.

When v = 1, the rate becomes Õ
(
d5/4

(nε)
1
2

+ d15/4

(nε)
3
2

)
and

Õ
(
d3/2

nε

)
for convex and strongly convex case respectively.

These bounds are consistent with the best known result in
[Kamath et al., 2022]. However, the methods in [Kamath et
al., 2022] cannot be extended to the case where v ∈ (0, 1).
In the following we show that the term of O

(
1

(εn)
v

1+v

)
and

O
(

1

(εn)
2v

1+v

)
is optimal for convex and strongly convex loss

in (ε, δ)-DP respectively. Moreover, we provide lower bounds
in the ε-DP model.
Theorem 8 (Lower Bound of Strongly Convex Loss). As-
sume W is the unit norm ball. For any v ∈ (0, 1],
there exists a strongly convex and smooth loss function
` : W × Rd 7→ R such that, for any ε-DP algorithm
A, there is a distribution D over Rd such that for any w,
supj∈[d] Ex∼D[|∇j`(w, x)|1+v] ≤ u, the output wpriv of A
satisfies the following if n ≥ Ω(u

1
v d

1+3v
2v /ε)

errD(wpriv) ≥ Ω

(
u

2
1+v d

(
d

εn

) 2v
1+v
)
.

For any (ε, δ)-DP algorithm A with ε � log 1
δ , there

is a distribution D over Rd such that for any w,
supj∈[d] Ex∼D[|∇j`(w, x)|1+v] ≤ u, its output wpriv satis-

fies the following if n ≥ Ω(u
1
v

√
log 1

δd
1+2v
2v /ε)

errD(wpriv) ≥ Ω

(
u

2
1+v d

(√
d log 1

δ

εn

) 2v
1+v
)
.

Theorem 9 (Lower Bound of Convex Loss). Assume W is
the unit norm ball. For any v ∈ (0, 1], there exists a convex
and smooth loss function ` :W ×Rd 7→ R such that, for any
ε-DP algorithm A, there is a distribution D over Rd such that
for any w, supj∈[d] Ex∼D[|∇j`(w, x)|1+v] ≤ u, its output
wpriv satisfies the following when n ≥ Ω(d/ε)

errD(wpriv) ≥ Ω

(
u

1
1+v

√
d

(
d

εn

) v
1+v
)
.

For any (ε, δ)-DP algorithm A with ε � log 1
δ , there

is a distribution D over Rd such that for any w,
supj∈[d] Ex∼D[|∇j`(w, x)|1+v] ≤ u, its output wpriv satis-

fies the following when n ≥ Ω(
√
d log 1

δ /ε)

errD(wpriv) ≥ Ω

(
u

1
1+v

√
d

(√
d log 1

δ

εn

) v
1+v
)
.

When v = 1, all the rates in Theorem 8 and 9 match
the lower bounds in [Kamath et al., 2022]. Thus, our re-
sults can be seen as extensions of the previous results. In
Theorem 8, the gap between the rates in ε-DP and (ε, δ)-DP
is O(d

v
1+v ), while it is O

(
d

v
2(1+v)

)
in Theorem 9. This is

quite different with the case when the loss is Lipschitz [Bass-
ily et al., 2014]. To prove the lower bounds, we first re-
duce the problem to mean estimation, and then we use the
private version of Fano’s lemma in [Acharya et al., 2021;
Kamath et al., 2022], based on the packing of distributions
in [Barber and Duchi, 2014].

6 Differentially Private Sparse Learning with
Heavy-tailed Data

In the previous section, we studied the general case of DP-
SCO under the assumption that the distribution of each co-
ordinate of the loss gradient has (1 + v)-th moment. How-
ever, one weakness of our previous results is that, all the error
bounds are in the form of O(Poly(d, 1

n ,
1
ε )), which indicates

that the error will be large in the high dimensional case where
d � n. Moreover, we also showed that in general these
polynomial dependencies are unavoidable. Thus, to address
the high dimensionality issue, in this section, we focus on
some special cases. Specifically, we will study the problem of
DP-SCO under sparsity constraints, which is also called DP
sparse learning, i.e.,W is defined asW = {w : ‖w‖0 ≤ s∗}.
We note that such a formulation encapsulates several impor-
tant problems such as the `0-constrained linear/logistic re-
gression [Bahmani et al., 2013]. In this section, unlike the
previous results on DP sparse learning which need strong
assumptions on data distribution, we study the problem un-
der the assumption that the gradient has only (1 + v)-th
moments. We first introduce some definitions to the loss
functions, which are commonly used in previous research on
sparse learning.
Definition 6 (Restricted Strong Convexity, RSC). A differ-
entiable function f(x) is restricted µr-strongly convex with
parameter r if for any x, x′ with ‖x − x′‖0 ≤ r, we have
f(x)− f(x′)− 〈∇f(x′), x− x′〉 ≥ µr

2 ‖x− x
′‖22.

Definition 7 (Restricted Strong Smoothness, RSS). A differ-
entiable function f(x) is restricted γs-strongly smooth with
parameter r if for any x, x′ with ‖x − x′‖0 ≤ r, we have
f(x)− f(x′)− 〈∇f(x′), x− x′〉 ≤ γr

2 ‖x− x
′‖22.

Note that RSC and RSS are weaker than the strong con-
vexity and smoothness. Next we propose the assumptions
that will be used in this section.
Assumption 2. We assume that the objective function LD(·)
is µr-RSC and `(w, x) is γr-RSS with parameter r = 2s+s∗,



Algorithm 4 Peeling(v, s, ε, δ, λ)[Cai et al., 2021]

Input: A vector v ∈ Rd of a dataset X , sparsity s, privacy
parameter ε, δ, and noise scale λ.

1: Initialize S = ∅.
2: for i← 1, · · · , s do
3: Generate wi ∈ Rd with wi,1, · · · , wi,d ∼

Lap(
4λ
√

2s log 1
δ

ε ).
4: Append j∗ = arg maxj∈[d]\S |vj |+ wi,j to S.
5: end for
6: Generate w̃ ∈ Rd with w̃1, · · · , w̃d ∼ Lap(

4λ
√

2s log 1
δ

ε ).
7: return vS + w̃S .

where s = O(( γrµr )2s∗). We also assume for any w ∈ W ′,
the distribution of each coordinate of the gradient of the loss
function has bounded (1 + v)-th (raw) moment with some
v ∈ (0, 1], i.e., for each j ∈ [d], E[|∇j`(w, x)|1+v] ≤ u,
whereW ′ = {w|‖w‖0 ≤ s}.

There are many problems satisfying Assumption 2, e.g.,
mean estimation and `2-norm regularized generalized linear
loss where LD(w) = E[`(〈w, x〉)] + λ

2 ‖w‖
2
2. If |`′(·)| ≤

O(1), |`′′(·)| ≤ O(1) (such as the logistic loss) and xj has
bounded (1 + v)-th moment, then we can see that it satisfies
Assumption 2.

Our method can be found in Algorithm 5, which is built
upon the ideas of our previous private one dimensional mean
estimator for heavy-tailed distributions and the Iterative Hard
Thresholding method [Blumensath and Davies, 2009]. In de-
tail, in each iteration, we first perform the truncation step
to each coordinate of the gradient of the loss to get one-
dimensional mean estimator. Next, unlike the one dimen-
sional private mean estimator in Algorithm 1 where we add
Gaussian noise to the mean of the truncated gradients, here
we privately select top s indices via the Peeling mechanism
(shown in Algorithm 4). This is due to that if we use Algo-
rithm 1 to each coordinate, then the magnitude of the noise
we add will depend on polynomial of d, which is large. How-
ever, using the Peeling mechanism will introduce an error that
only depends on polynomial of s and log d. In the following
we show the theoretical guarantee of our algorithm.

Theorem 10. For any 0 < ε, δ < 1, Algorithm 5 is (ε, δ)-DP.
Moreover, under Assumption 2, given any failure probability
ξ, if we set T = Õ( γrµr log n), s = O(( γrµr )2s∗), η0 = 2

3γr

and B = O
((

γrunε

T log dT
ξ

√
s log 1

δ

) 1
1+v
)

, then with probability

at least 1− ξ,

errD(wpriv) ≤ O

(
(s∗)

1+2v
1+v u

2
1+v

(
log n log d

ξ

√
log 1

δ

nε

) 2v
1+v
)
,

(2)
where the Big-O notation omits γr and µr.

Compared with the results in Section 5, we can see that in
Theorem 10 the bound is only logarithmic in d and polyno-
mial in s∗, 1

ε and 1
n , which means it is more suitable to the

high dimensional case.

Algorithm 5 Heavy-Tailed Private Sparse Optimization

Input: Data samples X = {xi}ni=1 ⊆ Rd, parameters
s, T, η, initial s-sparse parameter w1, privacy parameter
ε, δ.

Output: Private minimizere wpriv

1: Split X into T parts {Xt}Tt=1 with |Xt| = m = n
T .

2: for t← 1, · · · , T do.
3: for each dimension j ∈ [d] do
4: for each data sample x ∈ Xt do
5: ∇j`′(wt, x)← ∇j`(wt, x)1|∇j`(wt,x)|≤B
6: end for
7: end for
8: Get the robust gradient estimator g̃t(wt, Xt):[

g̃t(wt, Xt)
]
j
← 1

m

∑
x∈Xt

∇j`′(wt, x).

9: Denote wt+0.5 ← wt − η0g̃
t(wt, Xt)

10: Let wt+1 ← Peeling(wt+0.5, s, ε, δ, 2Bη0
m ).

11: end for
12: return wpriv ← wT+1.

Remark 3. For DP sparse learning with Lipschitz loss or reg-
ular data, [Wang and Xu, 2019] provided an upper bound of
Õ( s∗

n2ε2 ). Moreover, for high dimensional sparse mean esti-
mation and Generalized Linear Model (GLM) with the Lips-
chitz loss and sub-Gaussian data, [Cai et al., 2020; Cai et al.,
2021] provided optimal rates of Õ

(
s∗ log d
n + (s∗ log d)2

(nε)2

)
. We

can see that compared with these results, the error bound now

becomes Õ
( (s∗)

1+2v
1+v u

2
1+v

(nε)
2v

1+v

)
due to data irregularity. When

v = 1, the error bound now becomes to Õ
(

(s∗)
3
2 u

(nε)

)
, which

matches the result in [Hu et al., 2022]. Thus, our result can
be seen as a generalization of the previous ones.

One open question is whether we can further improve the
rate of error in Theorem 10. In the following we show that
the bound is optimal up to a factor of Õ(s∗).
Theorem 11. For W = {w ∈ Rd : ‖w‖0 ≤ s∗} and any
v ∈ (0, 1], there exists a strongly convex and smooth loss
function ` : W × Rd 7→ R such that, for any ε-DP algo-
rithm A, there is a distribution D over Rd such that for any
w, supj∈[d] Ex∼D[|∇j`(w, x)|1+v] ≤ u, its output wpriv sat-
isfies the following when n ≥ Ω(s∗ log d/ε)

errD(wpriv) ≥ Ω

(
u

2
1+v

(
s∗ log d

εn

) 2v
1+v
)
.

For any (ε, δ)-DP algorithm A with ε � log 1
δ ,

there is a distribution D over Rd such that for any w,
supj∈[d] Ex∼D[|∇j`(w, x)|1+v] ≤ u, its output wpriv satis-

fies the following when n ≥ Ω(
√
s∗ log d log 1

δ /ε)

errD(wpriv) ≥ Ω

(
u

2
1+v

(√
s∗ log d log 1

δ

εn

) 2v
1+v
)
.
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A Some Useful Results
Lemma 4 (Tail Bound of Laplacian Vairable [Dwork et al., 2006]). If X ∼ Lap(b), then

P(|X| ≥ t · b) = exp(−t).

Lemma 5 (Tail Bound of Gaussian Variable). If X ∼ N (µ, σ2), then

P(X ≥ µ+ t) ≤ exp(− t2

2σ2
).

Lemma 6 (Bernstein’s Inequality [Vershynin, 2018]). Let X1, · · ·Xn be n independent zero-mean random variables. Suppose
|Xi| ≤M and E[X2

i ] ≤ s for all i. Then for any t > 0, we have

P{ 1

n

n∑
i=1

Xi ≥ t} ≤ exp(−
1
2 t

2n

s+ 1
3Mt

)

Lemma 7 (Chebyshev’s Inequality). Let D be a distribution over Rd with bounded (1 + v)-th moment for some v ∈ (0, 1].
Then the following holds for any t,

Px∼D(‖x‖2 > t) ≤ E[‖x‖1+v
2 ]

t1+v

Lemma 8 (Jensen’s Inequality). Let X be an integrable, real-valued random variable, and ψ be a convex function. Then

ψ(E[X]) ≤ E[ψ(X)].

Lemma 9 (Holder’s Inequality). Let X,Y be random variables over R, and let k > 1. Then,

E[|XY |] ≤
(
E
[
|X|k

]) 1
k

(
E
[
|Y |

k
k−1

]) k−1
k

.

Lemma 10. Given a random variable X with E[|X|1+v] ≤ u for some v ∈ (0, 1], for any B > 0 we have

E[X1|X|>B ] ≤ u

Bv
.

Proof of Lemma 10. The the definition of expectation we have

u ≥ E|X|1+v =

∫ ∞
0

(1 + v)t1+v−1P(|X| > t)dt

≥
∫ ∞
B

tvP(|X| > t)dt

≥ Bv
∫ ∞
B

P(|X| > t)dt

= Bv
∫ ∞

0

P(X1|X|>B > t)dt

= BvE[X1|X|>B ]

Lemma 11. ([von Bahr and Esseen, 1965, Theorem 2]). Let X1, · · · , Xn be independent random variables over R such that
for ∀i ∈ [n], E[Xi] = 0 and E[|Xi|1+v] <∞, where v ∈ (0, 1]. Then

E
[∣∣∣∑n

i=1
Xi

∣∣∣1+v
]
≤ 2

∑n

i=1
E
[
|Xi|1+v

]
.

The lemma imples the following result:

Lemma 12. Let x1, . . . , xn ∈ R be independent random variables such that for ∀i ∈ [n], we have E[xi] = 0 and E[|xi|1+v] ≤
M for some v ∈ (0, 1]. Then

E

[∣∣∣∣∑n
i=1 xi
n

∣∣∣∣1+v
]
≤ 2M

nv
.



Proof. Note that E[xi] = 0 and xi’s are independent, according to Lemma 11, we have E[|
∑n
i=1 xi|1+v] ≤ 2

n∑
i=1

E[|xi|1+v] =

2nM for v ∈ (0, 1]. Thus we have

E

[∣∣∣∣∑n
i=1 xi
n

∣∣∣∣1+v
]
≤ 2nM

n1+v
=

2M

nv

Lemma 13 (Relation between Raw Moment and Central Moment). Let x be a random variable over Rd such that with mean µ
and (1 + v)-th raw moment bounded by a constant M , i.e., E[x] = µ and E[|〈x,X〉|1+v] <∞ where X ∈ Sd−1 is an arbitrary
unit vector and v ∈ (0, 1]. Then we have

E[|〈x− µ,X〉|1+v] ≤ 4E[|〈x,X〉|1+v].

Moreover, when E[|〈x− µ,X〉|1+v] <∞ for an arbitrary unit vector X then we have

E[|〈x,X〉|1+v] ≤ 2E[(|〈x− µ,X〉|1+v)] + 2‖µ‖1+v
2

Proof. When E[|〈x,X〉|1+v] <∞ then

E[|〈x− µ,X〉|1+v] = E[|〈x,X〉 − 〈µ,X〉|1+v]

≤ E[2(|〈x,X〉|1+v + |〈µ,X〉|1+v)]

= 2E[|〈x,X〉|1+v] + 2E[|〈µ,X〉|1+v]

= 2E[|〈x,X〉|1+v] + 2|〈µ,X〉|1+v

= 2E[|〈x,X〉|1+v] + 2|〈E[x],X〉|1+v

= 2E[|〈x,X〉|1+v] + 2|E[〈x,X〉]|1+v

≤ 2E[|〈x,X〉|1+v] + 2E[|〈x,X〉|1+v]

= 4E[|〈x,X〉|1+v],

where the first inequality is due to the inequality (6) of [von Bahr and Esseen, 1965], and the last inequality is due to Jensen’s
inequality (Lemma 8).

When E[|〈x− µ,X〉|1+v] <∞ then we have

E[|〈x,X〉|1+v] ≤ 2E[|〈x− µ,X〉|1+v] + 2‖µ‖1+v
2

Since the proofs will involves the private minimax risk, we first introduce the classical statistical minimax risk before dis-
cussing its private version. More details can be found in [Barber and Duchi, 2014].

Let P be a class of distributions over a data universe X . For each distribution p ∈ T , there is a deterministic function
θ(p) ∈ T , where T is the parameter space. Let ρ : T ×T :7→ R+ be a semi-metric function on the space T and Φ : R+ 7→ R+

be a non-decreasing function with Φ(0) = 0 (in this paper, we assume that ρ(x, y) = ‖x − y‖ and Φ(x) = x unless specified
otherwise). We further assume that X = {Xi}ni=1 are n i.i.d observations drawn according to some distribution p ∈ P , and
Q : Xn 7→ Θ be some algorithm whose output Q(X) is an estimator. Then the minimax risk in metric Φ ◦ ρ is defined by the
following saddle point problem:

Mn(θ(P),Φ ◦ ρ) := inf
Q

sup
p∈P

EX∼pn,Q[Φ(ρ(Q(X), θ(p))],

where the supremum is taken over distributions p ∈ P and the infimum over all estimators Q(X).
In the (ε, δ)/ε-DP model, the estimator Q(X) is obtained via some (ε, δ)/ε-DP mechanism Q. Thus, we can also define the

(ε, δ)/ε-private minimax risk:

Mn(θ(P), Q,Φ ◦ ρ, ε, δ) := inf
Q∈Q

inf
θ̂

sup
p∈P

EX∼pn,Q[Φ(ρ(Q(X), θ(p))],

where Q is the set of all the (ε, δ)/ε-DP mechanisms. When δ = 0, we denote it asMn(θ(P), Q,Φ ◦ ρ, ε)
Next, we recall two private Fano’s Lemmas given in [Acharya et al., 2021; Kamath et al., 2022].

Lemma 14 (Theorem 2 in [Acharya et al., 2021]). Consider a set of distributions V = {p1, p2, · · · , pM} ⊆ P such that for all
i 6= j,

• Φ(ρ(θ(pi), θ(pj)) ≥ α,



• DKL(pi, pj) ≤ β, where DKL is the KL-divergence,

• DTV (pi, pj) ≤ γ,

then we have

Mn(θ(P), Q,Φ ◦ ρ, ε) ≥ 1

M

∑
i∈[M ]

EX∼pni ,Q[Φ(ρ(Q(X), θ(pi))] ≥ max{α
2

(1− nβ + log 2

logM
), 0.4αmin{1, M

e10εnγ
}}. (3)

Lemma 15. [Theorem 1.4 in [Kamath et al., 2022]] In the case where ε � log 1
δ , consider a set of distributions V =

{p1, p2, · · · , pM} ⊆ P such that for all i 6= j,

• Φ(ρ(θ(pi), θ(pj)) ≥ α,

• DKL(pi, pj) ≤ β, where DKL is the KL-divergence,

• DTV (pi, pj) ≤ γ,

then we have

Mn(θ(P), Q,Φ ◦ ρ, ε, δ) ≥ 1

M

∑
i∈[M ]

EX∼pni ,Q[Φ(ρ(Q(X), θ(pi))]

≥ α

2
max{1− nβ + log 2

logM
, 1−

ε2

4 log 1
δ

(n2γ2 + nγ(1− γ)) + log 2

logM
}.

Proof. The proof is directly followed by Theorem 1.4 in [Kamath et al., 2022] where we know that each ρ = (
√

log 1
δ + ε −√

log 1
δ )2-zCDP is (ε, δ)-DP. Since (

√
log 1

δ + ε−
√

log 1
δ )2 ≈ ε2

4 log 1
δ

when ε2 � log 1
δ , we can get the proof.

B Omitted Proofs in Section 4
Proof of Theorem 1. For the proof of DP, note that the sensitivity of µ̂ is 2B

n . Then the guarantee of DP follows directly from
the Gaussian Mechanism. Next we focus on the utility. With probability at least 1− 3ξ, we have

|µ̃− µ| =

∣∣∣∣∣ 1n
n∑
i=1

xi · 1|xi|≤B + ν − Ex

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

xi · 1|xi|≤B − Ex

∣∣∣∣∣+ |ν|

=

∣∣∣∣∣ 1n
n∑
i=1

xi · 1|xi|≤B − E[x · 1|x|≤B ] + E[x · 1|x|≤B ]− Ex

∣∣∣∣∣+ |ν|

≤

∣∣∣∣∣ 1n
n∑
i=1

xi · 1|xi|≤B − E[x · 1|x|≤B ]

∣∣∣∣∣+
∣∣E[x · 1|x|≤B ]− Ex

∣∣+ |ν|

=

∣∣∣∣∣ 1n
n∑
i=1

xi · 1|xi|≤B − E[x · 1|x|≤B ]

∣∣∣∣∣+
∣∣E[x · 1|x|>B ]

∣∣+ |ν|

≤

√
2B1−vu log 1

ξ

n
+
B log 1

ξ

3n
+

u

Bv
+

4
√

2B

nε

√
log

1.25

δ

√
log

1

ξ
, (4)

where the last inequality is due to lemma 10, the lemma 5 that with probability at least 1− 2ξ,

|ν| ≤ 4
√

2B

nε

√
log

1.25

δ

√
log

1

ξ
,

and the lemma 6 that with probability at least 1− ξ,∣∣∣∣∣ 1n
n∑
i=1

xi · 1|xi|≤B − E[X · 1|X|≤B ]

∣∣∣∣∣ ≤
√

2B1−vu log 1
ξ

n
+
B log 1

ξ

3n
. (5)



Since B =

(
unε

log 1
ξ

√
log 1.25

δ

) 1
1+v

and ε ≤ 1, we can bound each term in (4) as follows,

√
2B1−vu log 1

ξ

n
=

√√√√√√√2u
2

1+v ε
1−v
1+v

(
log 1

ξ

) 2v
1+v

n
2v

1+v

(√
log 1.25

δ

) 1−v
1+v

≤

√√√√√2u
2

1+v

(
log 1

ξ

) 2v
1+v
(√

log 1.25
δ

) v
1+v

n
2v

1+v ε
v

1+v

≤

√√√√√2u
2

1+v

(
log 1

ξ

) 2v
1+v
(√

log 1.25
δ

) 2v
1+v

n
2v

1+v ε
2v

1+v

=
√

2u
1

1+v


√

log 1.25
δ log 1

ξ

nε


v

1+v

, (6)

B log 1
ξ

3n
=

1

3
u

1
1+v

(
log 1

ξ

) v
1+v

ε
1

1+v

n
v

1+v

(√
log 1.25

δ

) 1
1+v

≤ 1

3
u

1
1+v


√

log 1.25
δ log 1

ξ

nε


v

1+v

, (7)

u

Bv
= u

1
1+v


√

log 1.25
δ log 2

ξ

nε


v

1+v

, (8)

4
√

2B

nε

√
log

1.25

δ

√
log

1

ξ
= 4
√

2u
1

1+v


√

log 1.25
δ

nε


v

1+v (
log

1

ξ

) v−1
2(1+v)

≤ 4
√

2u
1

1+v


√

log 1.25
δ log 1

ξ

nε


v

1+v

. (9)

Based on (6), (7), (8), (9), we can conclude that, with probability at least 1− 3ξ,

|µ̃− µ| ≤ 9u
1

1+v


√

log 1.25
δ log 1

ξ

nε


v

1+v

(10)

Proof of Theorem 2. First, we construct two distributions that are close and show that any (ε, δ)-DP algorithm that distinguishes
between them requires a large number of samples. The result is shown in the following lemma.

Lemma 16. Let ε, δ, α > 0. Suppose D1 is an one-point distribution over {0} and D2 is an binomial distribution defined as
follows:

D2 ,

{
τ, w.p. p

0, o.w.

where τ is a positive such that pτ = α and α
1+v
v = pu

1
v (that is, τ =

(
u
p

) 1
1+v

). Then the following holds.

1. The ((1 + v))-th raw moment of D2 is bounded by u, i.e., EX∼D2
[|x|1+v] ≤ u.

2. Any (ε, δ)-DP algorithm that distinguishes betweenD1 andD2 with a constant probability requires at least 1

εα
1+v
v

samples.



Proof. The first part follows from direct calculation.

EX∼D2
[|X|1+v] = pτv+1 = u (11)

Next we focus on the second part. Note that |EX∼D1 [X] − EX∼D2 [X]| = α. Suppose we take n samples each from D1 and
D2, then by Theorem 11 of [Acharya et al., 2018], we know that any ε-DP algorithm that distinguishes between D1 and D2

with a constant error probability must satisfy

pn =
α

1+v
v

u
1
v

n ∈ Ω

(
1

ε

)
,

which gives

n ∈ Ω

(
u

1
v

1

εα
1+v
v

)
.

Thus, by using the equivalence of pure DP and approximate DP for testing problems (e.g., Lemma 2 and Lemma 3 of [Acharya
et al., 2018]), we conclude the proof.

Next we back to the proof of Theorem 2. It can be concluded from Lemma 16 that, any (ε, δ)-DP algorithm takes at least n ∈
Ω
(
u

1
v

1

εα
1+v
v

)
samples to get an estimation µ̂ for µ such that |µ̂−µ| ≤ α

2 with a constant probability. Finally, we show that, even

if the algorithm takes enough samples, we must have |µ̂−µ| ∈ Ω
(
u

1
v+1 ( 1

nε )
v

1+v

)
. If not, we have |µ̂−µ| ∈ o

(
u

1
v+1 ( 1

nε )
v

1+v

)
,

i.e., α ∈ o
(
u

1
v+1 ( 1

nε )
v

1+v

)
. Then according to n ∈ Ω

(
u

1
v+1 1

εα
1+v
v

)
, we have n ∈ ω

(
1

ε(( 1
nε )

v
1+v )

1+v
v

)
= ω(n), which is

impossible. Thus the lower bound concludes.

C Omitted Proofs in Section 5
Proof of Theorem 3. For the proof of DP, we first bound the sensitivity of the non-private µ̂. Fixing a dimension j ∈ [d], for
two neighbouring dataset X and X ′, we have |µ̂j(X) − µ̂j(X ′)| ≤ 2τm

n . Therefore, the `2 sensitivity of µ̂ is upper bounded
by 2τm

√
d

n . Thus, by the Gaussian mechanism, Theorem 3 is (ε, δ)-DP.
For the upper bound, we first show the accuracy guarantees of the non-private estimator µ̂. We analyze the algorithm

coordinatewisely. For a fixed dimension j ∈ [d] and a fixed sample batch k,

∣∣µ̂kj − µj∣∣ =

∣∣∣∣∣∣mn
k· nm∑

i=(k−1)· nm+1

[x′i]j − µj

∣∣∣∣∣∣
=

∣∣∣∣∣∣mn
k· nm∑

i=(k−1)· nm+1

[xi]j · 1|[xi]j |≤τ − E[[x]j ]

∣∣∣∣∣∣
=

∣∣∣∣∣∣mn
k· nm∑

i=(k−1)· nm+1

[xi]j · 1|[xi]j |≤τ − E[[x]j · 1|[x]j |≤τ ] + E[[x]j · 1|[x]j |≤τ ]− E[[x]j ]

∣∣∣∣∣∣
≤

∣∣∣∣∣∣mn
k· nm∑

i=(k−1)· nm+1

[xi]j · 1|[xi]j |≤τ − E[[x]j · 1|[x]j |≤τ ]

∣∣∣∣∣∣+
∣∣E[[x]j · 1|[x]j |≤τ ]− Ex

∣∣
=

∣∣∣∣∣∣mn
k· nm∑

i=(k−1)· nm+1

[xi]j · 1|[xi]j |≤B − E[[x]j · 1|[x]j |≤τ ]

∣∣∣∣∣∣+
∣∣E[[x]j · 1|[x]j |>τ ]

∣∣ . (12)

The first term in (12) can be bounded According to Theorem 4 as

P

∣∣∣∣∣∣mn
k· nm∑

i=(k−1)· nm+1

[xi]j · 1|[xi]j |≤B − E[[x]j · 1|[x]j |≤B ]

∣∣∣∣∣∣ ≤ (80u)
1

1+v

(m
n

) v
1+v

 ≥ 0.9 (13)

The second term in (12) is bounded in Lemma 10 such that

E[[x]j1|[x]j |>τ ] ≤ u

τv
. (14)



For batch k, denote Ek as the event that∣∣∣∣∣∣mn
k· nm∑

i=(k−1)· nm+1

[xi]j · 1|[xi]j |≤B − E[[x]j · 1|[x]j |≤B ]

∣∣∣∣∣∣ ≤ (80u)
1

1+v

(m
n

) v
1+v

Note that µ̂j = median(µ̂1
j , · · · , µ̂mj ). Suppose µ̂j = µ̂k0j , k0 ∈ [m], event Ek0 happens if and only if at least a half events in

{Ek}mk=1 happens. By Hoeffding’s inequality,

P

∣∣∣∣∣∣mn
k0· nm∑

i=(k0−1)· nm+1

[xi]j · 1|[xi]j |≤B − E[[x]j · 1|[x]j |≤B ]

∣∣∣∣∣∣ ≤ (80u)
1

1+v

(m
n

) v
1+v

 ≤ e−m4 . (15)

Apply the union bound to all the dimensions, and combine the result with (14), we get

P
(
‖µ̂− µ‖2 ≥

√
d

(
(80u)

1
1+v

(m
n

) v
1+v

+
u

τv

))
≤ d · e−m4 ≤ ξ

2
. (16)

Next, we consider the private estimator µ̃. Since the noise ν ∼ N
(
0, σ2

)
, where σ2 = 8τ2m2d

ε2n2 ln 1.25
δ ·Id×d, by the tail property

of chi-squared distribution,

P

(
‖ν‖2 ≥ 2σ

(
√
d+

√
log

(
1

ξ

)))
≤ ξ

2
. (17)

Note that ‖µ̃− µ‖2 ≤ ‖µ̂− µ‖+ ‖ν‖2, we conclude the proof by the union bound.

Proof of Theorem 4. By Lemma 13, we have E[|xi − µ|1+v] ≤ 4M . According to Lemma 12, we have

E

∣∣∣∣∣ 1n
n∑
i=1

xi − µ

∣∣∣∣∣
1+v
 ≤ 8M

nv
. (18)

Follow Chebyshev’s inequality, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

xi − µ

∣∣∣∣∣ ≥ t
)
≤

E
[∣∣ 1
n

∑n
i=1 xi − µ

∣∣1+v
]

t1+v
(19)

≤ 8M

nv
1

t1+v
. (20)

Set t =
(

80M
nv

) 1
1+v , we have

P

(∣∣∣∣∣ 1n
n∑
i=1

xi − µ

∣∣∣∣∣ ≥
(

80M

nv

) 1
1+v

)
≤ 1

10
(21)

Proof of Theorem 5. By the composition property of DP (Lemma 1), Algorithm 2 preserves (ε, δ)-DP.

C.1 Proof of Upper Bounds

Algorithm 6 SCO Framework SCOFη,T,MeanEstimator(X)

Input: Data samples X = {xi}ni=1, xi ∈ R, algorithm MeanEstimator, parameters η, T .
Output: Iteratives {w1, w2, · · · , wT }.

1: for t← 1, · · · , T do
2: ∇L̂D(wt−1) = MeanEstimator({∇`(wt−1, x)}x∈Xt)
3: wt = ProjW(wt−1 − η∇L̂D(wt−1))
4: end for
5: return {w1, w2, · · · , wT }

Our idea of proof follows [Kamath et al., 2022]. To obtain the accuracy guarantee of Algorithm 2, we first recall the
the relationship between the excess population risk of general SCO framework (shown in Algorithm 6) and the accuracy of
MeanEstimator it uses. We summarize the results in Lemma 17 and 18 for general convex population risk functions and the
population risk functions that are both strongly convex and smooth respectively.



Lemma 17. (Convex[Kamath et al., 2022, Theorem 3.1]) Suppose that MeanEstimator guarantees that, for any w ∈ W ,
‖E[∇L̃D(w)] − ∇LD(w)‖2 ≤ B and E[‖∇L̃D(w) − ∇LD(w)‖22] ≤ V2. Under the Assumption 1, for any η > 0 the output
wpriv = 1

T

∑
t∈[T ] wt satisfies

EX∼Dn,A[LD(wpriv)− LD(w∗)] ≤ ∆2

2ηT
+
ηR2

2
+
ηV2

2
+ ∆B.

where w∗ = arg minw LD(w).
Lemma 18. (Strongly Convex[Kamath et al., 2022, Theorem 3.2]) Suppose that MeanEstimator guarantees that, for any
w ∈ W , E[‖∇L̃D(w) −∇LD(w)‖2] ≤ V . Under Assumption 1, and the further assumption that the population risk function
LD(·) is α-strongly convex and β-smooth, if η = 1

α+β , the output wpriv = wT satisfies

EX∼Dn,A[LD(wpriv)− LD(w∗)] ≤ (1− α+ β

(α+ β)2
)T∆ +

(α+ β)V
αβ

Specifically, if we set T = log( (α+β)V
αβ )/ log(α

2+β2+αβ
(α2+β2) ), the output wpriv satisfies

EX∼Dn,A[LD(wpriv)− LD(w∗)] ≤ (α+ β)2(∆ + 1)2V2

2α2β2

where w∗ = arg minw LD(w).
To provide the performance guarantee on our DP-SCO algorithm, we need to obtain bounds for the gradient estimator that

hold uniformly over the choice of w ∈ W . Specifically, we have the following results.
Lemma 19. Consider our Algorithm 2, the following holds for all w ∈ W simultaneously:

1.
∥∥∥E [∇L̃D(w)

]
−∇LD(w)

∥∥∥
2
≤ Õ

(
u

1
1+v d

1+3v
2(1+v)

n
v

1+v
+ u

√
d

τv

)
2. E

[∥∥∥∇L̃D(w)−∇LD(w)
∥∥∥2

2

]
≤ Õ

(
τ2d4T
ε2n2 + u

2
1+v d

1+3v
1+v

n
2v

1+v
+ u2 d

τ2v

)
Proof. We start with the proving the first part. By the law of total expectation, we have E

[
∇L̃D(w)

]
=

E
[
E
[
∇L̃D(w)

∣∣∇L̂D(w)
]]

= E
[
∇L̂D(w)

]
. Thus, we only need to focus on the non-private ∇L̂D(w). In order to ob-

tain the bounds that hold uniformly over the parameter space W , we follow a standard covering net argument. Suppose the

parameter spaceW is covered by a set of balls with radius γ. Then number of balls, denoted byNγ , is upper bounded by
(

∆
γ

)d
,

where ∆ is the diameter ofW . LetWγ = {w̃1, · · · , w̃Nγ} denotes the centers of this covering. For an arbitrary w ∈ W , there
exists some w̃ ∈ Wγ such that ‖w − w̃‖2 ≤ γ. Then,∥∥∥E [∇L̃D(w)

]
−∇LD(w)

∥∥∥
2

=
∥∥∥E [∇L̂D(w)

]
−∇LD(w)

∥∥∥
2
≤ E

[∥∥∥∇L̂D(w)−∇LD(w)
∥∥∥

2

]
≤ E

[∥∥∥∇L̂D(w)−∇L̂D(w̃)
∥∥∥

2
+
∥∥∥∇L̂D(w̃)−∇LD(w̃)

∥∥∥
2

+ ‖∇LD(w̃)−∇LD(w)‖2
]
.

We bound each term in the last inequality above respectively. For the first term, we need to analyze how much the output of
the non-private estimator ∇L̂D(w) changes when the input switches from w to w̃. According to the β-smooth assumption, for
each dimension j ∈ [d] and batch k ∈ [m], the average differs no more than βγ. For each dimension j, the median differ no
more than βγ. Summing over all the dimensions,∥∥∥∇L̂D(w)−∇L̂D(w̃)

∥∥∥
2
≤ βγ ·

√
d.

For the second term, according to Theorem 3, with probability at least 1− ξ,∥∥∥∇L̂D(w̃)−∇LD(w̃)
∥∥∥

2
≤ O

√d
u 1

1+v

(
log d

ξ

n

) v
1+v

+
u

τv

 .

Let ξ =
(
γ
∆

)2d
, by union bound, with probability at least 1− ξ ·Nγ ≥ 1−

(
γ
∆

)d
, for all w̃ ∈ Wγ ,

‖∇L̂D(w̃)−∇LD(w̃)‖2 ≤ O

√d
u 1

1+v

(
log d

ξ

n

) v
1+v

+
u

τv

 .



Taking expectation, we have

E
[∥∥∥∇L̂D(w̃)−∇LD(w̃)

∥∥∥
2

]
≤ O

√d
u 1

1+v

(
log d

ξ

n

) v
1+v

+
u

τv

+R ·
( γ

∆

)d

≤ O

√d
u 1

1+v

(
log d

ξ

n

) v
1+v

+
u

τv

+ γd

 ,

where we assume R and ∆ are constants. For the third term, by the smoothness assumption,

‖∇LD(ŵ)−∇LD(w)‖2 ≤ βγ.
Summing up all three terms and taking γ = 1

n
v

1+v
, we have∥∥∥E [∇L̃D(w)

]
−∇LD(w)

∥∥∥
2
≤ E

[∥∥∥∇L̂D(w)−∇LD(w)
∥∥∥

2

]
≤ Õ

(
u

1
1+v

d
1+3v

2(1+v)

n
v

1+v
+ u

√
d

τv

)
. (22)

Next, we prove the second part. By the Cauchy-Schwartz inequality, we have

E
[∥∥∥∇L̃D(w)−∇LD(w)

∥∥∥2

2

]
≤ 2E

[∥∥∥∇L̃D(w)−∇L̂D(w)
∥∥∥2

2

]
+ 2E

[∥∥∥∇L̂D(w)−∇LD(w)
∥∥∥2

2

]
.

According to the Gaussian mechanism, we know that E
[∥∥∥∇L̃D(w)−∇L̂D(w)

∥∥∥2

2

]
≤ 8τ2m2d2

ε′2n2 ln 1.25
δ′ =

1024τ2
[
log(2d)+2d log

(
∆n

v
1+v

)]2
d2T log 2.5T+2

δ

ε2n2 , and by (22), we have

E
[∥∥∥∇L̃D(w)−∇LD(w)

∥∥∥2

2

]
≤ Õ
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τ2d4T

ε2n2
+ u

2
1+v

d
1+3v
1+v

n
2v

1+v

+ u2 d

τ2v

)
.

Based on the results above, we are able to show the upper bounds for Algorithm 2 by the appropriate choice of τ , η and T .

Proof of Theorem 6.

∆2

2ηT
= O

(
∆

d
1+4v
2+2v

(εn)
v

1+v

)
,

η

2
R2 = O

(
∆
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(εn)
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)
,

∆B ≤ Õ

(
∆u

1
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d
1+3v
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n
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1+v
+ ∆u

d
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(εn)
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)
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1
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(εn)
v
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)
,

ηV2

2
≤ Õ

(
∆

d
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(εn)
v

1+v
+

∆u
2

1+v

R2

d
3+10v
2+2v

ε
v

1+v n
3v

1+v

+
∆u2
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d
3+12v
2+2v

(εn)
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≤ Õ

(
∆ max{u2, u

2
1+v }( d

1+4v
2+2v

(εn)
v

1+v
+

d
3+12v
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(εn)
3v
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)
.

Combining all the terms together, we have

E
X∼Dn,A

[
LD
(
wpriv

)
− LD (w∗)

]
≤ Õ

(
∆
d

3+12v
2+2v

(εn)
v

1+v

)
.

The proof then concludes by applying the results of Lemma 17.

Proof of Theorem 7. Setting ξ = 0.1 and τ =
(
uεn√
d

) 1
1+v

in Theorem 3 gives the following corollary.

Corollary 1. Taking τ =
(
uεn√
d

) 1
1+v

in Algorithm 3, then with probability at least 0.9, the output µ̃ of Algorithm 3 satisfies

‖µ̃− µ‖2 = Õ

(
u

1
1+v

√
d
( 1

n

) v
1+v

+ u
1

1+v
d

1+2v
2+2v

(εn)
v

1+v

)
. (23)



For the DP-SCO in the strongly convex setting, for each iteration, the input of the mean estimator DPHDME is disjoint and
independent, with size of n

T . Due to the choice of τ in Algorithm 2, the Corollary 1 immediately guarantees the following
accuracy for Algorithm 2.

Lemma 20. Consider the Algorithm 2 with τ =
(
uεn√
dT

) 1
1+v

. Under Assumption 1, the following holds for all wt, t ∈ [T ]:

E[∇L̃D(wt)−∇LD(wt)] ≤ Õ

(
u

1
1+v

√
d
(T
n

) v
1+v

+ u
1

1+v d
1+2v
2+2v

( T
εn

) v
1+v

)
. (24)

Note that T is poly-logarithmic on n and d. The proof of the theorem follows directly from the results of Lemma 18

C.2 Proof of Lower Bounds
Proof of Theorem 8. We first prove the theorem by studying the lower bound for DP mean estimation, which is shown in
Lemma 21. Then we show a reduction from DP mean estimation to DP-SCO.

Lemma 21. For any given v ∈ (0, 1] and ε-DP algorithm A, there exists a distribution D over Rd with ‖ED[x] = µ‖2 ≤ 1 and
supj∈[d] Ex∼D[|xj |1+v] ≤ u, such that when n ≥ Ω(u

1
v d

1+3v
2v /ε),

Ex∼D,A[‖A(x)− µ‖2] ≥ Ω

(
√
du

1
1+v

(
d

εn

) v
1+v

)
.

By Jensen’s inequality, the above yields

Ex∼D,A[‖A(x)− µ‖22] ≥ Ω

(
u

2
1+v d

(
d

εn

) 2v
1+v

)
.

For any (ε, δ)-DP algorithm A with ε � log 1
δ , there exists a distribution D with ‖ED[xj ] = µ‖2 ≤ u and

supj∈[d] Ex∼D[|xj |1+v] ≤ u, such that when n ≥ Ω(u
1
v

√
log 1

δd
1+2v
2v /ε)

Ex∼D,A[‖A(x)− µ‖22] ≥ Ω

u 2
1+v d


√
d log 1

δ

εn


2v

1+v
 .

Proof. We adopt the packing argument from [Barber and Duchi, 2014]. A binary code of length d is a set Θ ⊆ {0, 1}d and
each θ ∈ Θ is a codeword. The weight of a binary codeword θ is the number of 1’s in θ, i.e., |{i : θi = 1}|. We say a binary
code is a constant weight code if each θ ∈ Θ has the same weight. Given θ ∈ Θ, let Qθ = (1−p)P0 +pPθ for some p ∈ (0, 1],
where P0 is a point mass on {D = 0} and Pθ is a point mass on

{
D = (u/p)

1
1+v θ

}
. Given Qθ, let µθ ∈ Rd be the mean

of Qθ, i.e., µθ = Ex∼Qθ [x]. According to the Gilbert-Varshamov bound for constant-weight codes (see, e.g., [Acharya et al.,
2021]), there exists a code Θ such that,

• The cardinality of Θ satisfies |Θ| ≥ 2
7

128d.

• For all θ ∈ Θ, θ ∈ {0, 1}d with ‖θ‖1 = d
2 .

• For all θ1, θ2 ∈ Θ, dHam(θ1, θ2) =
∑d
j=1 I[(θ1)j 6= (θ2)j ] ≥ d

8 .

We first compute the norm of µθ. Note that for all θ ∈ Θ, ‖µθ‖2 is the same, which is denoted by ι.

‖µθ‖2 = ‖Ex∼Qθ [x]‖2 = u
1

1+v p
v

1+v

√
d

2
, ι.

Let x ∼ Qθ we have

sup
j∈[d]

Ex∼Qθ [|xj |1+v] ≤ p ·
(

(u/p)
1

1+v

)1+v

= u.

Now, we are able to bound the error. Define the family Dv(1) of heavy-tailed distributions supported on Rd by

Dv(1) , {D| suppD ⊆ Rd and Ex∼D[|xj |1+v] ≤ 1∀j ∈ [d]}.



Note that |Θ| ≥ 2
7

128d. Furthermore, ∀θ 6= θ′, ‖µθ−µθ′‖2 ≥ 2ι and dTV(Qµ, Qµ′) = p. Thus, by Lemma 14 with Φ(x) = x
and ρ as the `2-norm difference we have

Mn(θ(Dv(1)), Q, ‖ · ‖2, ε) ≥
1

|Θ|
∑
θ∈Θ

EX∼Qnθ ,Q[‖(Q(X)− µθ‖2] ≥ Ω(ιmin{1, |Θ|
eεnp

) = Ω(u
1

1+v

√
dp

v
1+v min{1, |Θ|

eεnp
}).

(25)

Take p = Ω(min{1, dnε}) we have the result. Next we just enforce ‖µθ‖2 = ι ≤ 1. This holds when n ≥ Ω(u
1
v d

1+3v
2v /ε).

For (ε, δ)-DP, by Lemma 15 we have

Mn(θ(Dv(1)), Q, ‖·‖2, ε, δ) ≥
1

|Θ|
∑
θ∈Θ

EX∼Qnθ ,Q[‖(Q(X)−µθ‖2] ≥ Ω(u
1

1+v

√
dp

v
1+v (1−

ε2

4 log 1
δ

(n2p2 + np(1− p)) + log 2

log |Θ|
).

(26)

Take p = Ω(min{1,
√
d log 1

δ

nε }) we have the result. Next we just enforce ‖µθ‖2 = ι ≤ 1. This holds when n ≥
Ω(u

1
v

√
log 1

δd
1+2v
2v /ε).

Now we back our proof. We focus on the (ε, δ)-DP (it is the same for δ = 0). By Lemma 21 we know that there exists a
distribution D with ED[x] = µ, ‖µ‖2 ≤ 1 and supj∈[d] Ex∼D[|x|1+v] ≤ u, such that

Ex∼D,A[‖A(x)− µ‖22] ≥ Ω

u 2
1+v d


√
d log 1

δ

εn


2v

1+v
 .

For this distribution D, we consider the following SCO LD(w) = Ex∼D 1
2‖x − w‖

2
2. We can see that ∇LD(w) = Ex∼D[x −

w] = µ− w. Since ‖µ‖2 ≤ 1 we can se that w∗ = arg minw∈W LD(w) = µ and

LD(w)− LD(w∗) =
1

2
Ex∼D[‖w − x‖22 − ‖w∗ − x‖22]

=
1

2
Ex∼D[‖w‖22 − 2〈w, x〉+ ‖x‖22 − ‖w∗‖22 + 2〈w∗, x〉 − ‖x‖22]

=
1

2
(‖w‖22 − 2〈w,w∗〉 − ‖w∗‖22 + 2〈w∗, w∗〉)

=
1

2
(‖w‖22 − 2〈w,w∗〉+ ‖w∗‖22)

=
1

2
‖w − w∗‖22

Thus we have

ED,ALD(wpriv)− LD(w∗) =
1

2
E‖wpriv − w∗‖22 ≥ Ω

u 2
1+v d


√
d log 1

δ

εn


2v

1+v
 .

Proof of Theorem 9. We first prove the private term (the second term). Again, we adopt the packing argument. Given θ ∈ Θ
with ‖θ‖1 = d

2 and θ ∈ {0, 1}d, let Qθ = (1 − p)P0 + pPθ for some p ∈ [0, 1], where P0 is a point mass on {D = 0} and

Pθ is a point mass on
{
D = (u/p)

1
1+v θ

}
. Let µθ be the mean of Qθ, i.e., µθ = Ex∼Qθ [x]. Additionally, we define µ̄θ be the

normalization of µθ, i.e., µ̄θ = µθ
‖µθ‖2 . Note that µ̄θ is in the same direction as µθ, with ‖µ̄θ‖2 = 1. By the Gilbert-Varshamov

bound for constant-weight codes, there exists a set Θ such that

• The cardinality of Θ satisfies |Θ| ≥ 2
7

128d.

• For all θ ∈ Θ, θ ∈ {0, 1}d with ‖θ‖1 = d
2 .

• For all θ1, θ2 ∈ Θ, dHam(θ1, θ2) ≥ d
8 .



For ∀θ ∈ Θ, ‖µθ‖2 is the same, which is denoted by ι.

‖µθ‖2 = ‖Ex∼Qθ [x]‖2 = u
1

1+v p
v

1+v ·
√
d

2
, ι.

Without loss of generality, we assume the parameter space ‖W‖2 = 1, which is a unit ball. Then we define the loss function
`(w, x). Given θ ∈ Θ and x ∼ Qθ, we let

`(w, x) = −〈w, x〉,
and

LQθ (w) = Ex∼Qθ [`(w, x)] = −〈w, µθ〉.
Note that ` is both convex and smooth. Let x ∼ Qθ. Note that∇`(w, x) = −x and E[∇`(w, x)] = −µθ,

sup
j∈[d]

Ex∼Qθ [|∇j`(w, x)|1+v] = sup
j∈[d]

Ex∼Qθ [| − xj |1+v] ≤ p · [(u/p)
1

1+v ]1+v = u.

Define the family Dv(u) of heavy-tailed distributions of x supported on Rd by

Dv(u) , {D| suppD ⊆ Rd and Ex∼D[|〈X, ej〉|1+v] ≤ u, ∀j ∈ [d]}.

Next we bound the error of SCO.

sup
D∈Dv(u)

E
[
LD(wpriv)− min

w∈W
LD(w)

]
≥ 1

|Θ|
∑
θ∈Θ

E
[
LQθ (w

priv)− min
w∈W

LQθ (w)

]
≥ 1

|Θ|
∑
θ∈Θ

E
[
〈 µθ
‖µ‖2

, µθ〉 − 〈wpriv, µθ〉
]

=
1

|Θ|
∑
θ∈Θ

E
[
‖µ‖2 − 〈wpriv − µθ〉

]
=

1

|Θ|
∑
θ∈Θ

E
[
‖µ‖2 · (1− 〈wpriv, µ̄θ〉)

]
≥ 1

|Θ|
∑
θ∈Θ

E
[
‖µ‖2 ·

1

2
(‖wpriv‖22 + ‖µ̄θ‖22 − 2〈wpriv, µ̄θ〉)

]
=

1

|Θ|
∑
θ∈Θ

E
[

1

2
· ‖µ‖2 · ‖wpriv − µ̄θ‖22

]
=
ι

2

1

|Θ|
∑
θ∈Θ

E
[
‖wpriv − µ̄θ‖22

]
,

where the first inequality comes from the fact that the worst case loss is no smaller than the average loss, the second inequality
is due to the fact that µ̄θ = arg minw∈W LQθ (w) = −〈w, µθ〉, and the third inequality comes from the fact that ‖wpriv‖2 ≤ 1

and ‖µ̄θ‖2 ≤ 1. Note that |Θ| ≥ 2
7

128d, and for ∀θ, θ′, ‖µ̄θ − µ̄θ′‖2 = Ω(1), DTV(Qθ, Qθ′) = p. Thus, by Lemma 14 with
Φ(x) = x and ρ as the `2-norm difference we have

1

|Θ|
∑
θ∈Θ

E
[
‖wpriv − µ̄θ‖22

]
≥ Ω(min{1, |Θ|

e10εnp
})

Take p = Ω(min(1, dnε )), we have
1

|Θ|
∑
θ∈Θ

E[‖wpriv − µ̄θ‖22] = Ω(1).

Then,

E[LD(wpriv)− min
w∈W

LD(w)] ≥ Ω(1) · ι = Ω

(
√
du

1
1+v ·min

{
1,

(
d

εn

) v
1+v

})
.

For (ε, δ)-DP, by Lemma 15 we have

1

|Θ|
∑
θ∈Θ

E
[
‖wpriv − µ̄θ‖22

]
≥ Ω(1−

ε2

4 log 1
δ

(n2γ2 + nγ(1− γ)) + log 2

log |Θ|
).



Take p = Ω(min(1,

√
d log 1

δ

nε )), we have

E[LD(wpriv)− min
w∈W

LD(w)] ≥ Ω(1) · ι = Ω

√du 1
1+v ·min

1,


√
d log 1

δ

εn


v

1+v

 .

D Proofs in Section 6
Proof of Theorem 10. For the guarantee of DP. First recall that for any 0 < ε, δ < 1, the Peeling mechanism Algorithm 4 is
(ε, δ)-DP if the input vector v(D) satisfies ‖v(D)‖∞ ≤ λ.

Lemma 22 (Lemma 3.3 in [Cai et al., 2021]). If for every pair of neighboring datasets D,D′ we have ‖v(D)− v(D′)‖∞ ≤ λ,
then Algorithm 4 is (ε, δ)-DP.

Since in each iteration of Algorithm 5 we use a new data. Thus, it is sufficient to show it is (ε, δ)-DP in each iteration. Since
we have for any neighboring data X ∼ X ′

‖wt+1 − w′t+1‖∞ = ‖ηg̃(wt−1, Xt)− ηg̃(wt−1, X ′t)‖∞ ≤
2Bηs

3m
.

Thus, by Lemma 22 we can see it is (ε, δ)-DP.
In the following we will proof the utility. For simplicity we will omit the subscript r in ur, λr. Before the proof, let us first

recall two lemmas related to the output of Algorithm 5.

Lemma 23 (Lemma 3.4 in [Cai et al., 2021] ). Let S and {wi}si=1 be defined is Algorithm 5. For every R1 ⊆ S and R2 ⊆ Sc
such that |R1| = |R2| and every c > 0, we have

‖vR2
‖22 ≤ (1 + c)‖vR1

‖22 + 4(1 +
1

c
)
∑
i∈[s]

‖wi‖2∞,

where v is the input vector of Algorithm 5.

Lemma 24 (Lemma A.3 in [Cai et al., 2021] ). Consider in Algorithm 5 with input vector ṽ and the index set S. For any index
set I , any v ∈ R|I| which is a subvector of ṽ and v̂ such that ‖v̂‖0 ≤ ŝ ≤ s, we have that for every c > 0,

‖vS − v‖22 ≤ (1 +
1

c
)
|I| − s
|I| − ŝ

‖v̂ − v‖22 + 4(1 + c)
∑
i∈[s]

‖wi‖2∞.

We denote g̃t = g̃(wt, Xt) and gt = ∇LD(wt), St = supp(wt), St+1 = supp(wt+1), S∗ = supp(w∗) and It =
St+1

⋃
St
⋃
S∗. We can see that |St| ≤ s, |St+1| ≤ 2 and |It| ≤ 2s + s∗. We also denote W t = 4

∑
i∈[s] ‖wi‖2∞, where

{wi} are the vectors in Algorithm 5 in the t-th iteration. We let η0 = η
γ for some η.

Then the smooth Lipschitz property we have

LD(wt+1)− LD(wt)

≤ 〈wt+1 − wt, gt〉+
γ

2
‖wt+1 − wt‖22

= 〈wt+1
It − w

t
It , g

t
It〉+

γ

2
‖wt+1

It − w
t
It‖22

≤ γ

2
‖wt+1

It − w
t
It +

η

γ
gtIt‖22 −

η2

2γ
‖gtIt‖22 + (1− η)〈wt+1 − wt, gt〉 (27)

First, let us focus on the third term of (27)

〈wt+1 − wt, gt〉 = 〈wt+1
St+1

⋃
St − w

t
St+1

⋃
St , g

t
St+1

⋃
St〉

= 〈wt+1
St+1 − wtSt+1 , gtSt+1〉+ 〈wt+1

St\St+1 − wtSt\St+1 , gtSt\St+1〉

= 〈wt+1
St+1 − wtSt+1 , gtSt+1〉 − 〈wtSt\St+1 , gtSt\St+1〉. (28)

From the definition we know that wt+1 = ŵt+1 + w̃St+1 , where ŵt+1 = (wt − η0g̃
t)St+1 . Thus,

〈wt+1 − wt, gt〉 = 〈ŵt+1
St+1 − wtSt+1 , gtSt+1〉+ 〈w̃St+1 , gtSt+1〉 − 〈wtSt\St+1 − gtSt\St+1〉. (29)



For the first term in (29) we have

〈ŵt+1
St+1 − wtSt+1 , gtSt+1〉 = 〈−η0g̃

t
St+1 , gtSt+1〉 = −η

γ
〈g̃tSt+1 , gtSt+1〉

= −η
γ
‖gtSt+1‖22 −

η

γ
〈g̃tSt+1 − gtSt+1 , gtSt+1〉

≤ −η
γ
‖gtSt+1‖22 +

η

2γ
‖gtSt+1‖22 +

η

2γ
‖g̃tSt+1 − gtSt+1‖22

= − η

2γ
‖gtSt+1‖22 +

η

2γ
‖g̃tSt+1 − gtSt+1‖22. (30)

Take (30) into (29) we have for c > 1

〈wt+1 − wt, gt〉 ≤ − η

2γ
‖gtSt+1‖22 +

η

2γ
‖g̃tSt+1 − gtSt+1‖22 + c‖w̃St+1‖22 +

1

4c
‖gtSt+1‖22 − 〈wtSt\St+1 − gtSt\St+1〉. (31)

For the last term of (31) we have

−〈wtSt\St+1 − gtSt\St+1〉 ≤
γ

2η
(‖wtSt\St+1 −

η

γ
gtSt\St+1‖22 − (

η

γ
)2‖gtSt\St+1‖22)

=
γ

2η
‖wtSt\St+1 −

η

γ
gtSt\St+1‖22 −

η

2γ
‖gtSt\St+1‖22. (32)

In Lemma 23, let v = wt − η
γ g̃

t, R2 = St\St+1 and R1 = St+1\St. We have for c > 1

‖wtSt\St+1 −
η

γ
g̃tSt\St+1‖22 ≤ (1 +

1

c
)‖wtSt+1\St −

η

γ
g̃tSt+1\St‖

2
2 + (1 + c)W t.

Since for every c > 1, (1− 1
c )‖a‖2 − (c− 1)‖b‖22 ≤ ‖a+ b‖2 ≤ (1 + 1

c )‖a‖22 + (1 + c)‖b‖22 we have

(1− 1

c
)‖wtSt\St+1 −

η

γ
gtSt\St+1‖22 − (c− 1)

η2

γ2
‖gtSt\St+1 − g̃tSt\St+1‖22

≤ ‖wtSt\St+1 −
η

γ
g̃tSt\St+1‖22 ≤ (1 +

1

c
)‖wtSt+1\St −

η

γ
g̃tSt+1\St‖

2
2 + (1 + c)W t

≤ (1 +
1

c
)[(1 + 1/c)‖wtSt+1\St −

η

γ
gtSt+1\St‖

2
2 + (1 + c)

η2

γ2
‖gtSt\St+1 − g̃tSt\St+1‖22] + 2(1 + c)W t. (33)

That is

‖wtSt\St+1 −
η

γ
gtSt\St+1‖22 ≤

(c+ 1)2

c(c− 1)
‖wtSt+1\St −

η

γ
gtSt+1\St‖

2
2

+ (c+
(c+ 1)2

c
)
η

2γ
(‖gtSt\St+1 − g̃tSt\St+1‖22 + ‖gtSt+1\St − g̃

t
St+1\St‖

2
2) +

c(1 + c)

c− 1
W t.

Thus

− 〈wtSt\St+1 − gtSt\St+1〉 ≤
(c+ 1)2

2c(c− 1)

η

γ
‖gtSt+1\St‖

2
2

+
γc(1 + c)

2η(c− 1)
W t − η

2γ
‖gtSt\St+1‖22 +

(2c+ 3)η

2γ
(‖gtSt\St+1 − g̃tSt\St+1‖22 + ‖gtSt+1\St − g̃

t
St+1\St‖

2
2).



Thus in (31) we have

〈wt+1 − wt, gt〉 ≤ − η

2γ
‖gtSt+1‖22 +

η

2γ
‖g̃tSt+1 − gtSt+1‖22 + c‖w̃St+1‖22

+
1

4c
‖gtSt+1‖22 − 〈wtSt\St+1 − gtSt\St+1〉

≤ − η

2γ
‖gtSt+1‖22 +

η

2γ
‖g̃tSt+1 − gtSt+1‖22 + c‖w̃St+1‖22 +

1

4c
‖gtSt+1‖22 −

η

2γ
‖gtSt+1‖22

+
(c+ 1)2

2c(c− 1)

η

γ
‖gtSt+1\St‖

2
2 +

(2c+ 3)η

2γ
(‖gtSt\St+1 − g̃tSt\St+1‖22 + ‖gtSt+1\St − g̃

t
St+1\St‖

2
2)

=
η

2γ
‖gtSt+1\St‖

2
2 +

η

2γ

3c+ 1

c(c− 1)
‖gtSt+1\St‖

2
2 −

η

2γ
‖gtSt\St+1‖22 −

η

2γ
‖gtSt+1‖22

+
1

4c
‖gtSt+1‖22 +

γc(1 + c)

2η(c− 1)
W t +

η

2γ
‖g̃tSt+1 − gtSt+1‖22 + c‖w̃St+1‖22

+
(2c+ 3)η

γ
(‖gtSt\St+1 − g̃tSt\St+1‖22 + ‖gtSt+1\St − g̃

t
St+1\St‖

2
2)

=
η

2γ
‖gtSt+1\St‖

2
2 −

η

2γ
‖gtSt\St+1‖22 −

η

2γ
‖gtSt+1‖22 +

1

c
(
1

4
+

η

2γ
+

η

2γ

3c+ 1

(c− 1)
)‖gtSt+1‖22

+
γc(1 + c)

2η(c− 1)
W t +

η

2γ
‖g̃tSt+1 − gtSt+1‖22 + c‖w̃St+1‖22 +

(2c+ 3)η

γ
(‖gtSt\St+1 − g̃tSt\St+1‖22 + ‖gtSt+1\St − g̃

t
St+1\St‖

2
2)︸ ︷︷ ︸

Nt

≤ η

2γ
‖gtSt+1\St‖

2
2 −

η

2γ
‖gtSt\St+1‖22 −

η

2γ
‖gtSt+1‖22 + C1

η

γc
‖gtSt+1‖22 +N t, (34)

where C1 > 0 is some constant. We can easily see that
η

2γ
‖gtSt+1\St‖

2
2 −

η

2γ
‖gtSt\St+1‖22 −

η

2γ
‖gtSt+1‖22 = − η

2γ
‖gtSt\St+1‖22 −

η

2γ
‖gtSt+1

⋂
St‖

2
2

= − η

2γ
‖gtSt+1

⋃
St‖

2
2

In total
〈wt+1 − wt, gt〉 ≤ − η

2γ
‖gtSt+1

⋃
St‖

2
2 + C1

η

γc
‖gtSt+1‖22 +N1. (35)

Take (35) into (27) we have

LD(wt+1)− LD(wt) ≤ γ

2
‖wt+1

It − w
t
It +

η

γ
gtIt‖22 −

η2

2γ
‖gtIt‖22 + (1− η)〈wt+1 − wt, gt〉

≤ γ

2
‖wt+1

It − w
t
It +

η

γ
gtIt‖22 −

η2

2γ
‖gtIt‖22 −

(1− η)η

2γ
‖gtSt+1

⋃
St‖

2
2 + C1

(1− η)

c

η

γ
‖gtSt+1‖22

+ (1− η)N t

≤ γ

2
‖wt+1

It − w
t
It +

η

γ
gtIt‖22 −

η2

2γ
‖gtIt\(St⋃S∗)‖22 − η2

2γ
‖gt(St⋃S∗)‖22 − (1− η)η

2γ
‖gtSt+1

⋃
St‖

2
2

+ C1
(1− η)

c

η

γ
‖gtSt+1‖22 + (1− η)N t

≤ γ

2
‖wt+1

It − w
t
It +

η

γ
gtIt‖22 −

η2

2γ
‖gtIt\(St⋃S∗)‖22 − η2

2γ
‖gt(St⋃S∗)‖22

− (1− η)η

2γ
‖gtSt+1\(S∗

⋃
St)‖

2
2 + C1

(1− η)

c

η

γ
‖gtSt+1‖22 + (1− η)N t, (36)

where the last inequality is due to St+1\(S∗
⋃
St) ⊆ St+1

⋃
St. Next we will analyze the term γ

2 ‖w
t+1
It − w

t
It + η

γ g
t
It‖22 −

η2

2γ ‖g
t
It\(St

⋃
S∗)‖

2
2 in (36). Let R be a subset of St\St+1 such that |R| = |It\(S∗

⋃
St)| = |St+1\(St

⋃
S∗)|. In Lemma 23,

we take v = wt − η
γ g̃

t, R2 = R and R1 = It\(S∗
⋃
St) we have for c > 1,

‖wtR −
η

γ
g̃tR‖22 ≤ (1 + c)‖(wt − η

γ
g̃t)It\(S∗

⋃
St)‖22 + (1 +

1

c
)W t. (37)



Just as in (33) we have is for c > 1,

(
η

γ
)2‖gtIt\(S∗⋃St)‖22 ≥ (1− 1

c
)‖wtR −

η

γ
gtR‖22 − cW t − c η

2

γ2
(‖g̃tR − gtR‖22 + ‖gtIt\(S∗⋃St) − g̃tIt\(S∗⋃St)‖22). (38)

Then we have

γ

2
‖wt+1

It − w
t
It +

η

γ
gtIt‖22 −

η2

2γ
‖gtIt\(St⋃S∗)‖22

≤ γ

2
‖w̃St+1‖22 +

γ

2
‖ŵt+1

It − w
t
It +

η

γ
gtIt‖22 −

γ

2
(1− 1

c
)‖wtR −

η

γ
gtR‖22 +

γc

2
W t

+ c
η2

2γ
(‖g̃tR − gtR‖22 + ‖gtIt\(S∗⋃St) − g̃tIt\(S∗⋃St)‖22) + c

η2

γ2
(‖g̃tR − gtR‖22 (39)

=
γ

2
‖ŵt+1

It − w
t
It +

η

γ
gtIt‖22 −

γ

2
‖ŵt+1

R − wtR +
η

γ
gtR‖22 +

γ

2
‖w̃St+1‖22 +

γc

2
W t

+
γ

2c
‖wtR −

η

γ
gtR‖22 + c

η2

2γ
(‖g̃tR − gtR‖22 + ‖gtIt\(S∗⋃St) − g̃tIt\(S∗⋃St)‖22) (40)

≤ γ

2
‖ŵt+1

It\R − w
t
It\R +

η

γ
gtIt\R‖

2
2 +

γ

2c
(1 +

1

c
)‖η
γ
gtIt\(S∗

⋃
St)‖

2
2 +

γ

2
‖w̃St+1‖22

+
γc

2
W t +

γ

2c
(1 + c)W t + C2c

η2

2γ
(‖g̃tR − gtR‖22 + ‖gtIt\(S∗⋃St) − g̃tIt\(S∗⋃St)‖22)︸ ︷︷ ︸

Nt1

. (41)

(39) is due to that [ŵt+1
It − (wtIt −

η
γ g

t
It)]St+1 = 0, thus 〈w̃St+1 , ŵt+1

It − (wtIt −
η
γ g

t
It)〉 = 0 and (38). (40) is due to ŵt+1

R = 0,
(41) is due to (37) by the same technique as in (33) and wtIt\(S∗⋃St) = 0. In the following we will consider the first term in
(41).

In Lemma 24, take v = wtIt\R −
η
γ g̃

t
It\R, v̂ = w∗, S = St+1 we have for all c > 1

‖ŵt+1
It\R − w

t
It\R +

η

γ
g̃tIt\R‖

2
2 ≤ (1 +

1

c
)
|It\R| − s
|It\R| − s∗

‖w∗ − wtIt\R +
η

γ
g̃tIt\R‖

2
2 + (1 + c)W t.

Then we have

(1− 1

c
)‖ŵt+1

It\R − w
t
It\R +

η

γ
gtIt\R‖

2
2 − (c− 1)

η2

γ2
‖gtIt\R − g̃

t
It\R‖

2
2

≤ ‖ŵt+1
It\R − w

t
It\R +

η

γ
g̃tIt\R‖

2
2

≤ (1 +
1

c
)
|It\R| − s
|It\R| − s∗

‖w∗ − wtIt\R +
η

γ
g̃tIt\R‖

2
2 + (1 + c)W t

≤ (1 +
1

c
)
|It\R| − s
|It\R| − s∗

[(1 +
1

c
)‖w∗ − wtIt\R +

η

γ
gtIt\R‖

2
2 + (1 + c)

η2

γ2
‖gtIt\R − g̃

t
It\R‖

2
2] + (1 + c)W t

That is

‖ŵt+1
It\R − w

t
It\R +

η

γ
gtIt\R‖

2
2 ≤

(c+ 1)2

c(c− 1)

2s∗

s+ s∗
‖w∗ − wtIt\R +

η

γ
gtIt\R‖

2
2

+
(c+ 1)2

c− 1

η2

γ2
‖gtIt\R − g̃

t
It\R‖

2
2 + c

η2

γ2
‖gtIt\R − g̃

t
It\R‖

2
2 +

(1 + c)c

c− 1
W t

Take c ≥
√

3√
3−
√

2
, and since |It\R| ≤ 2s∗ + s, we have

‖ŵt+1
It\R − w

t
It\R +

η

γ
gtIt\R‖

2
2 ≤

3

2

2s∗

s+ s∗
‖w∗ − wtIt\R +

η

γ
gtIt\R‖

2
2

+ C3c(‖gtIt\R − g̃
t
It\R‖

2
2 + ‖gtIt\R − g̃

t
It\R‖

2
2 +W t)︸ ︷︷ ︸

Nt3

. (42)



Take (42) into (41) we have

γ

2
‖wt+1

It − w
t
It +

η

γ
gtIt‖22 −

η2

2γ
‖gtIt\(St⋃S∗)‖22

≤ 3γs∗

2(s+ s∗)
‖w∗ − wtIt\R +

η

γ
gtIt\R‖

2
2 +

γ

2c
(1 +

1

c
)‖η
γ
gtIt\(S∗

⋃
St)‖

2
2 +

γ

2
‖w̃St+1‖22

+N t
1 +N t

3 (43)

=
3γs∗

2(s+ s∗)
‖w∗ − wtIt\R +

η

γ
gtIt\R‖

2
2 +

γ

2c
(1 +

1

c
)‖η
γ
gtSt+1‖22

+
γ

2
‖w̃St+1‖22 +N t

1 +N t
3 (44)

=
3s∗

s+ s∗
(η〈w∗ − wt, gt〉+

γ

2
‖w∗ − wt‖22 +

η2

2cγ
‖gtIt‖22) +

η2

2cγ
(1 +

1

c
)‖gtSt+1‖22

+
γ

2
‖w̃St+1‖22 +N t

1 +N t
3 (45)

≤ 3s∗

s+ s∗
(η(LD(w∗)− LD(wt)) +

γ − ηµ
2
‖w∗ − wt‖22 +

η2

2cγ
‖gtIt‖22) +

η2

2cγ
(1 +

1

c
)‖gtSt+1‖22

+
γ

2
‖w̃St+1‖22 +N t

1 +N t
3︸ ︷︷ ︸

Nt2

. (46)

Take (46) into (36) we have

LD(wt+1)− LD(wt) ≤ γ

2
‖wt+1

It − w
t
It +

η

γ
gtIt‖22 −

η2

2γ
‖gtIt\(St⋃S∗)‖22 − η2

2γ
‖gt(St⋃S∗)‖22

− (1− η)η

2γ
‖gtSt+1\(S∗

⋃
St)‖

2
2 + C1

(1− η)

c

η

γ
‖gtSt+1‖22 + (1− η)N t

≤ 3s∗

s+ s∗
(η(LD(w∗)− LD(wt)) +

γ − ηµ
2
‖w∗ − wt‖22 +

η2

2cγ
‖gtIt‖22) +

η2

2cγ
(1 +

1

c
)‖gtSt+1‖22

− η2

2γ
‖gt(St⋃S∗)‖22 − (1− η)η

2γ
‖gtSt+1\(S∗

⋃
St)‖

2
2 + C1

(1− η)

c

η

γ
‖gtSt+1‖22‖gtSt+1‖22 + (1− η)N t +N t

2. (47)

We have when c→∞

η2

2cγ
(1 +

1

c
)‖gtSt+1‖22 + C1

(1− η)

c

η

γ
‖gtSt+1‖22 → 0.

Thus, if η ≥ 1
2 there must exits a sufficient large c such that

η2

2cγ
(1 +

1

c
)‖gtSt+1‖22 +

(1− η)

c
(
1

4
+

η

2γ
)‖gtSt+1‖22 ≤

η(1− η)

4γ
‖gtSt+1‖22

≤ η2

4γ
‖gt(St⋃S∗)‖22 +

(1− η)η

4γ
‖gtSt+1\(S∗

⋃
St)‖

2
2 (48)

Thus,

LD(wt+1)− LD(wt) ≤ γ

2
‖wt+1

It − w
t
It +

η

γ
gtIt‖22 −

η2

2γ
‖gtIt\(St⋃S∗)‖22 − η2

2γ
‖gt(St⋃S∗)‖22

− (1− η)η

2γ
‖gtSt+1\(S∗

⋃
St)‖

2
2 + C1

(1− η)

c

η

γ
‖gtSt+1‖22 + (1− η)N t

≤ 3s∗

s+ s∗
(η(LD(w∗)− LD(wt)) +

γ − ηµ
2
‖w∗ − wt‖22 +

η2

2cγ
‖gtIt‖22)

− η2

4γ
‖gt(St⋃S∗)‖22 − (1− η)η

4γ
‖gtSt+1\(S∗

⋃
St)‖

2
2 + (1− η)N t +N t

2. (49)



Take η = 2
3 , s = 72 γ

2

µ2 s
∗ so that 3s∗

s+s∗ ≤
µ2

24γ(γ−ηµ) ≤
1
8 . We have

LD(wt+1)− LD(wt) ≤ 3s∗

s+ s∗
(η(LD(w∗)− LD(wt)) +

γ − ηµ
2
‖w∗ − wt‖22 +

η2

2cγ
‖gtIt‖22)

− η2

4γ
‖gt(St⋃S∗)‖22 − (1− η)η

4γ
‖gtSt+1\(S∗

⋃
St)‖

2
2 + (1− η)N t +N t

2

≤ 2s∗

s+ s∗
(LD(w∗)− LD(wt)) +

µ2

48γ
‖w∗ − wt‖22 +

1

36γ
‖gtIt‖22

− 1

9γ
‖gt(St⋃S∗)‖22 − 1

18γ
‖gtSt+1\(S∗

⋃
St)‖

2
2 +O(N t +N t

2)

≤ 2s∗

s+ s∗
(LD(w∗)− LD(wt))− 3

36γ
(‖gt(St⋃S∗)‖22 − µ2

4
‖w∗ − wt‖22) +O(N t +N t

2) (50)

≤ (
2s∗

s+ s∗
+

µ

24γ
)(LD(w∗)− LD(wt)) +O(N t +N t

2). (51)

Where (50) is due to the following lemma:

Lemma 25. [Lemma 6 in [Jain et al., 2014]]

|gt(St⋃S∗)‖22 − µ2

4
‖w∗ − wt‖22 ≥

µ

2
(LD(wt)− LD(w∗)). (52)

Thus
LD(wt+1)− LD(w∗) ≤ (1− 5

72

µ

γ
)(LD(wt)− LD(w∗)) +O(N t +N t

2).

Where

N t +N t
2 ≤ O(

∑
i∈[s]

‖wi‖2∞ + (2s+ s∗)‖g̃t − gt‖2∞ + s‖w̃‖2∞), (53)

where each coordinate of wi, w̃ sampled from ∼ Lap(O(
η0TB

√
s log 1

δ

nε )). We first bound the term of
∑
i∈[s] ‖wi‖2∞ + s‖w̃‖2∞.

We recall the following lemma:

Lemma 26 (Lemma A.1 in [Cai et al., 2021]). For a random vector w ∈ Rd, where wi ∼ Lap(λ), then for any ξ > 0,

Pr(‖w‖2∞ ≥ 4λ2 log2 1

ξ
log2 d) ≤ ξ.

Take the union we have with probability at least 1− ξ,∑
i∈[s]

‖wi‖2∞ + s‖w̃‖2∞ ≤ O(
η2

0T
2B2s2 log 1

δ log2 Ts
ξ

n2ε2
).

For s‖g̃t − gt‖2∞, due to the assumption on the moment and (5) we have with probability at least 1− ξ

(2s+s∗)‖g̃t−gt‖2∞ ≤ (2s+s∗)(

√
2B1−vu log d

ξ

m
+
B log 1

ξ

3m
+

u

Bv
)2 = O(s(

TB1−vu log d
ξ

n
+
B2T 2 log2 1

ξ

n2
+

u2

B2v
)). (54)

Thus, we have with probability at least 1− 2ξ,

N t +N t
2 = O(s(

TB1−vu log d
ξ

n
+

u2

B2v
+
T 2B2s log 1

δ log2 Ts
ξ

γ2n2ε2
)). (55)

Take B = O(

(
γunε

T log d
ξ

√
s log 1

δ

) 1
1+v

) we have

N t +N t
2 = O

s 1+3v
2+2v u

2
1+v (

T log d
ξ

n
)

2v
1+v + su

2
1+v

T log d
ξ

√
s log 1

δ

γnε


2v

1+v
 = O

su 2
1+v

T log d
ξ

√
s log 1

δ

γnε


2v

1+v
 .

(56)



In total we have for all t ∈ [T ] with probability at least 1− ξ,

LD(wt+1)− LD(w∗) ≤ (1− µ

12γ
)(LD(wt)− LD(w∗)) +O

su 2
1+v

T log d
ξ

√
s log 1

δ

γnε


2v

1+v


LD(wT+1)− LD(w∗) ≤ (1− µ

12γ
)T+1(LD(w1)− LD(w∗)) +O

γ
µ
· su

2
1+v

T log d
ξ

√
s log 1

δ

γnε


2v

1+v
 .

Take T = Õ( γµ log n) and s = O(( γµ )2s∗) we have the result.

Proof of Theorem 11. We first show the following result:

Lemma 27. For any (ε, δ)-DP algorithm A, there exists a distribution D over Ex∼D[x] = µ with ‖µ‖0 ≤ s∗ and
supj∈[d] Ex∼D[|xj |1+v] ≤ u, such that

Ex∼D,A[‖A(x)− µ‖2] ≥ Ω

(
u

1
1+v min

(
1,

{
s∗ log d

εn

) v
1+v

})
.

By Jensen’s inequality, the above yields

Ex∼D,A[‖A(x)− µ‖22] ≥ Ω

(
u

2
1+v min

{
1,

(
s∗ log d

εn

) 2v
1+v

})
.

For any (ε, δ)-DP algorithm A, there exists a distribution D over Ex∼D[x] = µ with ‖µ‖0 ≤ s∗ and supj∈[d] Ex∼D[|xj |1+v] ≤
u, such that

Ex∼D,A[‖A(x)− µ‖22] ≥ Ω

u 2
1+v min

1,


√
s∗ log d log 1

δ

εn


2v

1+v

 .

Proof. We first recall the following lemma:

Lemma 28. [[Raskutti et al., 2011]] For any s∗ ∈ [d], define the set

H(s∗) := {z ∈ {−1, 0,+1}d | ‖z‖0 = s∗}
with Hamming distance ρH(z, z′) =

∑d
i=1 1[zj 6= z′j ] between the vectors z and z′. Then, there exists a subset H̃ ⊂ H with

cardinality |H̃| ≥ exp( s2 log d−s∗
s∗/2 ) such that ρH(z, z′) ≥ s∗

2 for all z, z′ ∈ H̃.

We denote the index set Θ = 1√
2s∗

H̃ where H̃ is in Lemma 28. We can see that for any θ, θ′ ∈ Θ we have ‖θ − θ′‖2 ≥
√

2

and each ‖θ‖2 ≤ 1. For each θ we construct the following distribution: Pθ := (1 − p)P0 + pPθ ∈ P with some p ∈ [0, 1],
where Let P0 be a point mass distribution supported on X = 0, let Pθ be a point mass supported on X = (up )

1
1+v θ. We can see

that Ex∼Pθ [‖x‖
1+v
2 ] ≤ u and ‖µθ‖0 = ‖Ex∼Pθ [x]‖0 ≤ s∗. Thus, Pθ ∈ Dv,s∗(u), where the family Dv,s∗(u) of heavy-tailed

distributions of x supported on Rd by

Dv,s∗(u) , {D| suppD ⊆ Rd and Ex∼D[|〈X, ej〉|1+v] ≤ u,∀j ∈ [d] and ‖Ex∼D[x]‖0 ≤ s∗}.

Moreover we have ‖µθ − µθ′‖2 ≥
√

2p
v

1+v u
1

1+v for all θ, θ′ ∈ Θ, and DTV (Pθ, Pθ′) ≤ p. Thus, by Lemma 14 we have

Mn(θ(Dv,s∗(u)), Q, ‖ · ‖2, ε) ≥
1

|Θ|
∑
θ∈Θ

EX∼Pnθ ,Q[‖Q(X)− µθ‖] ≥ Ω(p
v

1+v u
1

1+v min{1, |Θ|
e10εnp

}). (57)

Let p = Ω({1, s
∗ log d
nε }) we have the result for all ε-DP algorithms.

For (ε, δ)-DP, by Lemma 15 we have

Mn(θ(Dv,s∗(1)), Q, ‖·‖2, ε, δ) ≥
1

|Θ|
∑
θ∈Θ

EX∼Pnθ ,Q[‖Q(X)−µθ‖] ≥ Ω(p
v

1+v u
1

1+v (1−
ε2

4 log 1
δ

(n2p2 + np(1− p)) + log 2

log |Θ|
).

(58)

Take p = Ω({1,
√
s∗ log d log 1

δ

nε }) we have the result.



Now we back to the proof, we can reduce the problem to mean estimation for each D ∈ Dv,s∗(u), where LD(w) =
Ex∼D[ 1

2‖x− w‖
2
2]. Note that ∇LD(w) = Ex∼D[x]− w. Thus w∗ = Ex∼D[x] ∈ W and LD(wpriv)− L(w∗) = 1

2E‖w
priv −

Ex∼D[x]‖2. By Lemma 27 we complete the proof.
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